MINISTERIO DE OBRAS PÚBLICAS Y COMUNICACIONES

SUBSECRETARÍA DE MINAS Y ENERGÍA

DIRECCIÓN DE RECURSOS MINERALES DEPARTAMENTO DE GEOLOGÍA

MATERIALES ARCILLOSOS DEL PRECÁMBRICO SUR DEL PARAGUAY (POTENCIAL)

Por Ing. Luis A. Servín Villalba Lic. Ángel M. Spinzi M.

TUS LUS SERVIN

San Lorenzo, Paraguay Año 2002

PRESIDENTE DE LA REPÚBLICA DEL PARAGUAY EXCELENTÍSIMO DR. LUIS ÁNGEL GONZÁLEZ MACCI

MINISTRO DE OBRAS PÚBLICAS Y COMUNICACIONES EXCELENTÍSIMO ING. ALCIDES JIMÉNEZ

SUBSECRETARIO DE MINAS Y ENERGÍA EXCELENTÍSIMO ING. LUIS A. SERVÍN VILLALBA

DIRECTOR DE RECURSOS MINERALES MSc. PABLO PFLUGFELDER

JEFE DEL DEPARTAMENTO DE GEOLOGÍA LIC. ÁNGEL M. SPINZI M.

COORDINADOR LABORATORIO QUÍMICO LIC. VICTORINO GÓMEZ G.

COORDINADOR LABORATORIO MINERALÓGICO DR. JULIO C. GALEANO I.

> TÉCNICO LABORATORISTA TEC. DERLIS TURLAN

> > San Lorenzo, Paraguay Año 2002

CONTENIDO

RESUMEN

I.- INTRODUCCIÓN

- 1.- Ubicación y Accesos
- 2.- Aspectos Climáticos
- 3.- Relieve y Vegetación
- 4.- Drenaje
- 5.- Objetivos

II.- METODOLOGÍA

- 1.- Metodología de campo
- 2.- Metodología de laboratorio

III.- GEOLOGÍA Y ESTRUCTURAS REGIONALES

- IV.- CONSIDERACIONES GENERALES SOBRE ARCILLAS DEL ÁREA
- V.- RESULTADOS Y DISCUSIONES
- VI.- CONCLUSIONES
- VII.- RECOMENDACIONES
- VIII.- BIBLIOGRAFÍA

IX.- ANEXOS

- 1.- Lista de mapas
- 2.- Lista de tablas
- 3.- lista de Figuras

RESUMEN

Esta investigación fue realizada con el objeto de conocer y ubicar los materiales arcillosos del Precámbrico Sur del Paraguay, el mismo abarca principalmente los Departamentos de Misiones y Paraguarí. Mediante este trabajo se pudo analizarlos, tipificarlos y conocer las posibles aplicaciones para incursionar en nuevos rubros.

El área posee la ventaja de disponer todo tipo de infraestructura y excelente accesibilidad.

La metodología utilizada fue fundamentada en investigaciones anteriores, levantamiento con imágenes satelitales, reconocimiento, selección de áreas accesibles y desmuestres con métodos clásicos. Las muestras fueron analizadas en laboratorios, clasificadas, ensayadas y procesadas con los datos obtenidos.

Geológicamente la región corresponde a rocas cristalinas antiguas, cubiertas por camadas de materiales puzolánicos relacionados principalmente con la actividad andina. Estos materiales alterados e intemperizados adquirieron cierta trabajabilidad cerámica.

El rasgo principal de la región constituye el Río Tebicuary, que divide una región norte más nueva y una región sur más antigua, ambas con rocas cristalinas cámbricas y/o precámbricas.

Gracias a las investigaciones se han descubiertos materiales caolínicos de origen primario, denominados así por este trabajo, antes no reportados; materiales ricos en alumina que deben seguir siendo investigados, materiales aptos para todo tipo de ladrillos, pirofilítas para escultoría de capiteles, balaustres y otros. Materiales refractarios para crisoles, además de otros minerales beneficiosos.

1.- LISTA DE MAPAS

Mapa N° 1: Mapa de ubicación del área de estudio Mapa N° 2: Mapa de ubicación de ocurrencias arcillosas

Mapa Nº 3: Mapa Geológico

2.- LISTA DE TABLAS

Tabla Nº 1: Análisis tecnológico de muestras: Ocurrencia Nº 1 Tabla Nº 2: Análisis tecnológico de muestras: Ocurrencia Nº 2 Tabla Nº 3: Análisis tecnológico de muestras: Ocurrencia Nº 3 Tabla Nº 4: Análisis tecnológico de muestras: Ocurrencia Nº 4 Tabla Nº 5: Análisis tecnológico de muestras: Ocurrencia Nº 5 Tabla Nº 6: Análisis tecnológico de muestras: Ocurrencia Nº 6 Tabla Nº 7: Análisis tecnológico de muestras: Ocurrencia Nº 7 Tabla Nº 8: Análisis tecnológico de muestras: Ocurrencia Nº 8 Tabla Nº 9: Análisis tecnológico de muestras: Ocurrencia Nº 9 Tabla Nº 10: Análisis tecnológico de muestras: Ocurrencia Nº 10 Tabla Nº 11: Análisis tecnológico de muestras: Ocurrencia Nº 11 Tabla Nº 12: Análisis tecnológico de muestras: Ocurrencia Nº 12 Tabla Nº 13: Análisis tecnológico de muestras: Ocurrencia Nº 13 Tabla Nº 14: Análisis tecnológico de muestras: Ocurrencia Nº 14 Tabla Nº 15: Análisis tecnológico de muestras: Ocurrencia Nº 15 Tabla Nº 16: Análisis tecnológico de muestras: Ocurrencia Nº 16 Tabla Nº 17: Análisis tecnológico de muestras: Ocurrencia Nº 17 Tabla Nº 18: Análisis tecnológico de muestras: Ocurrencia Nº 18 Tabla Nº 19: Análisis tecnológico de muestras: Ocurrencia Nº 19 Tabla Nº 20: Análisis tecnológico de muestras: Ocurrencia Nº 20 Tabla Nº 21: Análisis tecnológico de muestras: Ocurrencia Nº 21 Tabla Nº 22: Análisis tecnológico de muestras: Ocurrencia Nº 22 Tabla Nº 23: Análisis tecnológico de muestras: Ocurrencia Nº 23 Tabla Nº 24: Análisis tecnológico de muestras: Ocurrencia Nº 24 Tabla Nº 25: Análisis tecnológico de muestras: Ocurrencia Nº 25 Tabla Nº 26: Análisis tecnológico de muestras: Ocurrencia Nº 26 Tabla Nº 27: Análisis tecnológico de muestras: Ocurrencia Nº 27 Tabla Nº 28: Análisis tecnológico de muestras: Ocurrencia Nº 28 Tabla Nº 29: Análisis tecnológico de muestras: Ocurrencia Nº 29 Tabla Nº 30: Análisis tecnológico de muestras: Ocurrencia Nº 30 Tabla Nº 31: Análisis tecnológico de muestras: Ocurrencia Nº 31 Tabla Nº 32: Análisis tecnológico de muestras: Ocurrencia Nº 32 Tabla Nº 33: Análisis tecnológico de muestras: Ocurrencia Nº 33 Tabla Nº 34: Análisis tecnológico de muestras: Ocurrencia Nº 34 Tabla Nº 35: Análisis tecnológico de muestras: Ocurrencia Nº 35 Tabla Nº 36: Análisis tecnológico de muestras: Ocurrencia Nº 36 Tabla Nº 37: Análisis tecnológico de muestras: Ocurrencia Nº 37 Tabla Nº 38: Análisis tecnológico de muestras: Ocurrencia Nº 38 Tabla Nº 39: Análisis tecnológico de muestras: Ocurrencia Nº 39 Tabla Nº 40: Análisis tecnológico de muestras: Ocurrencia Nº 40

Tabla Nº 41: Análisis tecnológico de muestras: Ocurrencia Nº 41 Tabla Nº 42: Análisis tecnológico de muestras: Ocurrencia Nº 42 Tabla Nº 43: Análisis tecnológico de muestras: Ocurrencia Nº 43

Tabla Nº 44: Materiales arcillosos del Precámbrico Sur - Paraguay - Número de

Tabla N° 45: MATERIALES ARCILLOSOS - PRECÁMBRICO SUR PARAGUAYO – ANÁLISIS QUÍMICOS Y TECNOLÓGICOS

Tabla Nº 46: Clasificación de los minerales de arcillas

3.- LISTA DE FIGURAS

Figura Nº 1: Gráfico de Atterberg: Ocurrencia Nº 1 Figura Nº 2: Gráfico de Atterberg: Ocurrencia Nº 2 Figura Nº 3: Gráfico de Atterberg: Ocurrencia Nº 3 Figura Nº 4: Gráfico de Atterberg: Ocurrencia Nº 4 Figura Nº 5: Gráfico de Atterberg: Ocurrencia Nº 5 Figura Nº 6: Gráfico de Atterberg: Ocurrencia Nº 6 Figura Nº 7: Gráfico de Atterberg: Ocurrencia Nº 7 Figura Nº 8: Gráfico de Atterberg: Ocurrencia Nº 8 Figura Nº 9: Gráfico de Atterberg: Ocurrencia Nº 9 Figura Nº 10: Gráfico de Atterberg: Ocurrencia Nº 10 Figura Nº 11: Gráfico de Atterberg: Ocurrencia Nº 12 Figura Nº 12: Gráfico de Atterberg: Ocurrencia Nº 14 Figura Nº 13: Gráfico de Atterberg: Ocurrencia Nº 15 Figura Nº 14: Gráfico de Atterberg: Ocurrencia Nº 16 Figura Nº 15: Gráfico de Atterberg: Ocurrencia Nº 17 Figura Nº 16: Gráfico de Atterberg: Ocurrencia Nº 18 Figura Nº 17: Gráfico de Atterberg: Ocurrencia Nº 19 Figura Nº 18: Gráfico de Atterberg: Ocurrencia Nº 20 Figura Nº 19: Gráfico de Atterberg: Ocurrencia Nº 21 Figura Nº 20: Gráfico de Atterberg: Ocurrencia Nº 22 Figura Nº 21: Gráfico de Atterberg: Ocurrencia Nº 23 Figura Nº 22: Gráfico de Atterberg: Ocurrencia Nº 24 Figura Nº 23: Gráfico de Atterberg: Ocurrencia Nº 25 Figura Nº 24: Gráfico de Atterberg: Ocurrencia Nº 26 Figura Nº 25: Gráfico de Atterberg: Ocurrencia Nº 27 Figura Nº 26: Gráfico de Atterberg: Ocurrencia Nº 28 Figura Nº 27: Gráfico de Atterberg: Ocurrencia Nº 29 Figura Nº 28: Gráfico de Atterberg: Ocurrencia Nº 32 Figura Nº 29: Gráfico de Atterberg: Ocurrencia Nº 33 Figura Nº 30: Gráfico de Atterberg: Ocurrencia Nº 34 Figura Nº 31: Gráfico de Atterberg: Ocurrencia Nº 35 Figura Nº 32: Gráfico de Atterberg: Ocurrencia Nº 36 Figura Nº 33: Gráfico de Atterberg: Ocurrencia Nº 37 Figura N° 34: Gráfico de Atterberg: Ocurrencia N° 38

THE THE TOTAL TOTA

Figura N° 35: Gráfico de Atterberg: Ocurrencia N° 40 Figura N° 36: Gráfico de Atterberg: Ocurrencia N° 41 Figura N° 37: Gráfico de Atterberg: Ocurrencia N° 43

I.- INTRODUCCIÓN

El uso de la cerámica es una las actividades más antiguas de la humanidad, así lo atestiguan ejemplares descubiertos que datan alrededor de 5.500 años Antes de Cristo (AC), denominada técnicamente *Cerámica Prehistórica*.

Respecto a la región de inicio de esta práctica existen controversias, pero algunos investigadores creen que se inició sincrónicamente, entre el cercano, mediano y lejano oriente.

En Siria se han encontrado cerámicas pulidas, hechas a mano de unos 5.500 AC, Pfeiffer C., 1982.

Las primeras cerámicas eran rusticas, blandas y quemadas a fuego directo, quinientos años más tarde ya se incursionó con los primeros barnices y esmaltes de altas temperaturas en el Asia Menor, Norton, 1970, de esta zona se dispersó rápidamente ésta tecnología hacia otras regiones, como Egipto, Chipre, Creta, etc.

El proceso progresó desde fabricación de simples vasijas hasta la ejecución de figurillas, generalmente de propósitos religiosos y obras de juguetería.

Especialmente en Asia Menor, se produjeron tejas y tabiques decorativos para uscs edilicios, Norton, 1970.

El torno cerámico o rueda de alfarero tuvo probablemente su origen en el cercano oriente, hacia los 3.000 años AC, aunque tuvieron que transcurrir cerca de 1.000 años para que su empleo se esparciera por Egipto, china y zonas adyacentes, Norton, 1970. Este invento no solo provocó una revolución en la ejecución de ceramicas, sino que transformó todo un sistema de vida, así fue la primera máquina inventada por el hombre, que en los próximos siglos desarrollaba las más complejas formas, y más tarde posibilitaba la vida moderna, Norton, 1970. Posteriormente al invento, esta disciplina se difunde, aumentando así también las termologías de movelos y consistente.

rosteriormente al invento, esta disciplina se difunde, aumentando así también las tecnologías de mezclas y cocciones, que se coronan en China, con la famosa porcelana, año 61 AC. Otros países intentaron imitarla sin éxito; hasta que en 1709, Después de Cristo (DC), el químico alemán Botter consigue la formula que por un tiempo la mantiene en secreto, Norton, 1970.

En la actualidad en Alemania se realizan más de 10 descubrimientos relacionados con la tecnología cerámica mensualmente. El Instituto de Tecnología Cerámica de Dresde, ha apostado por nuevos materiales cerámicos. Múltiples aplicaciones y gran versatilidad hacen de éstos una fuente inagotable hasta en los emprendimientos espaciales.

En las regiones donde se ha iniciado la cerámica como actividad, excavaciones demuestran los diversos usos dados a la arcilla en la antigüedad, por ejemplo: tablas de cálculos, contratos, historias épicas, planos de ciudades, mapas, murales, pisos, azulejos, tejas, esmaltes y barnices de altas temperaturas, contenedores de líquidos y granos, lámparas, ladrillos, sellos, estatuas, ataúdes, jarrones funerarios, altares, arcones, hornos, figurines humanos y animales, objetos sagrados, utensilios, vajillas y seguros de documentos contra fraudes.

Los Departamentos de Misiones y Paraguarí poseen estos recursos, susceptibles de ser aprovechados, por tal razón se creyó conveniente conocer más en cuanto a ocurrencias y tipos.

El primer informe sobre materiales arcillosos registrado en la Dirección de Recursos Minerales data del mes de junio de 1952, realizado por los Ing. Edwin Eckel, de la Geologycal Survey de los Estados Unidos de Norte América y Ricardo Mazó, Jefe del Departamento de Geología del Ministerio de Obras Públicas y Comunicaciones, se transcribe en parte: "El Paraguay posee depósitos abundantes de arcillas apropiadas para la mayoría de los tipos de cerámica y sin embargo importa una gran porción de sus necesidades".

El recurso mineral arcilloso no debe descuidarse por ser abundante, de transformación barata y realizable en el país, generando valor agregado, sin demanda de caras tecnologías, no daña al medio ambiente como la minería metálica, crea puestos de trabajo, abastece y desarrolla la industria nacional.

La utilización mineral tiene amplio espectro, podemos aseverar que la gran mayoría de los objetos que nos rodean y que utilizamos cotidianamente fueron fabricados con materia prima mineral, por lo que mencionamos dos super grupos minerales: 1 metálicos; 2 no metálicos.

En forma general los minerales metálicos se utilizan primordialmente en la industria metalúrgica, como ser aquellos principales portadores de metáles como hierro, niquel, cromo, titánio, manganeso, etc., mineralógicamente denominados hematita, pentlantita, cromita, ilmenita, pirolusita, respectivamente.

En lo referente a minerales no metálicos, el contexto es mucho más extenso, por las innumerables aplicaciones, mencionamos solo algunas: farmacología, industria papelera, medicina, cerámica, construcciones, agroindustrias, etc. Algunos de los más importantes son el caolín, bentonita, cuarzo, calcita, talco, pirofilita, feldespatos, etc.

Se cebe destacar que la minería no metálica es por excelencia una minería limpia desde el punto de vista ecológico, en contraste con la metálica, cuya extracción y procesamiento incluye reactivos químicos contaminantes.

En consideración a los volúmenes de materia prima y productos finales elaborados, la industria cerámica ocupa un lugar preponderante como minería no metalica.

Los autores expresan sus más sinceros agradecimientos a los geólogos Juan Carlos Benítez, Lucia de Figueredo y Julio Cesar Galeano por las invalorables colaporaciones para la realización de la presente investigación.

Creemos que con esta modesta contribución a los conocimientos de los materiales arcillosos del Precámbrico Sur del Paraguay se abre un abanico de posibilidades apara el desarrollo del sector

1.- UBICACIÓN Y ACCESOS

La región investigada comprende una superficie de 5.500 Km². (ver mapas 1,2,3). Está comprendida entre los paralelos 25°68'0" y 26°40'0", de latitud sur y los meridianos 56°40'0" y 57°30'0", de longitud oeste (ver mapa 1,2,3).

El área abarca parte de los Departamentos de Misiones y Paraguarí, Región Oriental de la República del Paraguay (ver mapas 1,2,3).

La va de acceso principal por tierra es la ruta internacional asfaltada Nº 1 Mcal. Francisco Solano López, que cruza la región de norte a sur (ver mapas 1,2,3),

uniendo la capital del país, Asunción, con la ciudad de Posadas, República Argentina (ver mapas 1,2,3).

Tambien existen ramales secundarios no asfaltados que comunican numerosas localidades (ver manas 2.3).

La vía de acceso principal por agua, corresponde al Río Tebicuary, que corta el área de investigación casi en dirección este – oeste, dividiendo dos regiones, área norte, con rocas cristalinas más jóvenes, y área sur, con rocas cristalinas más antiguas (ver mapas 2,3). Este curso de agua es navegable, pudiendo ser vía de acceso por el río Paraguay (ver mapas 1,2,3), arteria principal de navegación del continente Sudamericano (ver mapas 1,2,3). Queda por demás decir que las numerosas Estancias de la región cuentan con suficientes pistas de aterrizaje para aviones tipo liviano.

2.- ASPECTOS CLIMÁTICOS

El aspecto climático debe ser considerado en cuanto a los materiales arcillosos se refiere, por tratarse de minerales que por lo general no permean las aguas, esto hace que estén asociados con nacientes de agua, indicadores principales de los mismos.

El clima de la región estudiada es del tipo húmedo mesotermal. Las épocas más lluviosas están comprendidas entre los meses de octubre y abril, coincidier do con las temporadas más calientes y húmedas.

La temperatura media anual es de 21° C, con máximas próximas a los 40° C en el verano. Algunas heladas se producen entre los meses de mayo y setiembre.

3.- RELIEVE Y VEGETACIÓN

La región investigada esta dividida por el Río Tebicuary (ver mapas 2,3) en una zona norte y otra sur, el relieve consiste en elevaciones próximas a los 250 m sobre el nivel del mar, especialmente en la zona norte, terrenos generalmente llanos a ondulados con algunos cerros aislados en la zona sur (ver mapas 2,3). Los terrenos aledaños al Río Tebicuary son prolongaciones de las planicies de inundación, pueden ser considerados como dominios hidromórficos (ver mapas 1,2,3).

La vegetación de la zona norte es arbórea de porte mediano en las cumbres, modificada por la acción antrópica. Predomina la vegetación graminácea en los llanos y flancos de los valles. En los cursos de aguas por lo general se han desarrollado bosques en galerías.

En la zona sur, predomina la vegetación graminácea en los llanos, tipo arbóreo en los cerros aislados, y bosques en galería siguiendo cursos de aguas bien establecidos, no así los difusos y/o intermitentes (ver mapas 2,3)

Los terrenos precámbricos son de usos pastoriles, por lo que son muy sujetos a modificaciones por el preparado vegetal para engorde vacuno, la pastura artific al es práctica común de la región.

Las cuencas afectadas por materiales puzolánicos presentan vegetación similar a la chaqueña, palmares de tipo Caranday, Espinillos, Tunas, Espartillos altos, Cortaderas, Bosques islas con especies chaqueñas y el típico Caraguata. Las

areas anegadas están pobladas por Totoras, Pirices, Camalotes, Agua Regia, Llantenes, y también embalsados.

4.- DRENAJE

El drenaje principal de la región constituye el Río Tebicuary, con gran cantidad de tributarios (ver mapas 2,3).

Hacia la parte norte del área investigada, la red hidrográfica está controlada por fallas, fracturas y alineamientos (ver mapa 3).

La zona sur del Río Tebicuary se caracteriza por presentar una cobertura de naturaleza limo-arcillosa y relieves pocos acentuados, factores que no favorecen

al buen desarrollo de la red hidrográfica (ver mapas 2,3).

Al oeste se ha instalado un gran sistema de lagunas extensas y bañados, corresponden al humedal del Ypoa (ver mapas 2,3). Bastas regiones fueron trabajadas en épocas pretéritas por riadas del Río Paraguay. El sistema marca rasgos muy característicos hacia el oeste. Esas áreas presentan excelentes estructuras geológicas dificultadas por ambientes en subsidencias (ver

5.- OBJETIVOS

- Ubicar materiales arcillosos con potenciales aprovechables en los Departamentos de Misiones y Paraguarí respectivamente
- Caracterizar físicoquimicamente materiales arcillosos localizados
- Orientar hacia las posibles aplicaciones de los materiales arcillosos en las diferentes ocurrencias
- Clasificar materiales investigados con respecto a resultados obtenidos

II.- METODOLOGÍA

La presente investigación fue planificada para conocer de primera mano las condiciones que presentan los materiales arcillosos de los Departamentos de Misiones y Paraguari, lógicamente han quedado lugares de gran interés que en investigaciones posteriores deberán ser minuciosamente analizados. Se aplicaron metodologías convencionales de campaña y altas tecnologías de laboratorios.

1.- METODOLOGÍA DE CAMPO

Con interpretación de gabinete mediante imágenes de satélites y numerosos mapas compilados, se visito el área en carácter de reconocimiento, luego fueron elaborados mapas identificando zonas a ser visitadas con más detalle, orientado por ambientes geológicos reflejados. En base a conocimientos obtenidos se ha elaborado modos de obtención de muestras a ser procesadas. Trabajos anteriores sobre mapéo han sido de mucha utilidad en esta investigación.

Fueron obtenidas 43 muestras (ver mapa 2 y lista de tablas y figuras). Estos materiales arcillosos se extrajeron según la accesibilidad de los lugares, teniendo como eje principal la ruta internacional Nº 1 (ver mapas 1,2,3). El tipo de extracción dependió del material, su yacencia, estado de agregación, iportancia del n aterial y del lugar, etc. Se realizaron pozos perforados y/o cavados, canales

de frente de estratos, con herramientas de canteras, mecanizadas y semi mecanizadas, pequeñas trincheras y otros métodos. Para el efecto se tomaron precauciones para obtener representatividad según el alcance del trabajo, primeramente descripción megascopica, lupa binocular de campo, codificación de campaña en campamento, empaque correspondiente y remisión a los diferentes laboratorios (ver lista de tablas y figuras).

Los puntos del desmuestre fueron referenciados según coordenadas Universal Transversal de Mercator, UTM, con equipo de Sistema Global de

Posicionamiento, GPS (ver mapa 2).

2.- METODOLOGÍA DE LABORATORIO

Según las solicitudes de análisis, las muestras llegadas ingresaban a los diferentes laboratorios con nuevos códigos para su procesado. Fueron tratadas en estufa por 48 horas a 100° C, con el objeto de liberar la humedad de absorción, luego fueron tratadas en tolvas para el cuarteado, reducción de terrones y mezclado uniforme. Posteriormente fueron pasadas por zarandas para la eliminación de fracciones gruesas tales como gravas que podrían dañar los equipos, posteriormernte fueron derivadas a molinos de arcillas para la desactivación de grumos indeseables.

Preparada la muestra se procedió a la determinación de los parámetros de Atterberg (ver lista de tablas y figuras), los límites líquidos fueron identificados con el aparato de Casa Grande y los límites plásticos mediante los métodos de los rodillos. La diferencia de ambos entregaron los valores de los Indices Plásticos

(ver lista de tablas y figuras).

Lograda la humedad optima, se obtuvo el moldeo de probetas, proceso de muestras en estándares de bronce, impresión de códigos, fijado de las hendiduras para referencia dilatométrica. Las probetas terminadas fueron a secaderos de temperatura ambiente y protegidas de corrientes de aire que hacen que las muestras tiendan al pandeo, una vez secas fueron introducidas a estufa de 100° C per 48 hs., salidas de allí se registro el color de la probeta cruda mediante la Tabla de Colores de Munsell y la contracción al secado (ver tablas).

Pesteriormente se realizaron las cocciones controladas de 900°, 1000°, 1100° C, as: se obtuvieron parámetros tecnológicos de porosidad, absorción, contracción,

color de quema, peso específico y otros (ver tablas y figuras).

Calcinaciones controladas fueron posibles gracias a una mufla eléctrica trifásica, marca NABERTHEM. Una vez realizada la prueba, por cada muestra, los datos

tecnológicos fueron asentados en planillas (ver Anexos).

Los resultados de los análisis químico y físicomecanicos fueron procesados y correlacionados para la elaboración de tablas, figuras, gráficos y mapas (ver mapas, figuras y tablas). Estas constan en el presente informe y han ayudado fundamentalmente para las conclusiones de las investigaciones (ver Anexos).

III.- GEOLOGÍA Y ESTRUCTURAS REGIONALES

THE PROPERTY

IZVED

7'0

* 1

S. Maria

1 10

1

SEL Y

22 4

Hacia el sur de la región investigada, aparece un conjunto de rocas cristalinas, afectadas por metamorfismo de grado medio hacia alto, dentro de facies anfibolíticas a granulíticas. Corresponden a la "Suite Metamórfica Villa Florida", del Arqueano –Proterozóico Inferior y son principalmente paragneises y ortogneises, asociados con cuarcitas, BIF, rocas calcocilicatadas, mármol, anfibolitas y rocas ultrabásicas. Cortan a este conjunto diques de pegamatóides, aplitas y cuarzos de veta. Discordantemente sobre puestas a la "Suite Villa Florida" se encuentran rocas metasedimentarias clásticas y vulcanoclásticas , suavemente plegadas y corresponden al "GRUPO PASO PINDO", datado como del Proterozóico Superior. Las rocas magmáticas de la "Suite Efusiva Caapucu", se intruyeron en el Proterozóico Superior-Cámbrico, en la fase postectónica, con rocas ácidas, pricipalmente granitos y pórfidos (ver mapa 3).

La Suite Metamorfica Villa Florida y el Grupo Paso Pindó estan intruidos por la Suite Magmática Caapucú, esta Suite se compone de granitos de grano grueso y porfiríticos, pórfido de granitos, riolitas y riodacitas.

Los granitos de grano grueso se encuentran al noreste de Villa Florida, alrededor de la Estancia Barrerito, al este de Caapucú y cerca de la Compañía Jhú, pórfido de granitos ocurren entre Valle Apuá y el Establecimiento Fanego, también ocurren al sur de la Estancia Casualidad. Microgranitos y pórfidos de granitos – riolitas ocurren en un área más extensa entre la Colonia Potrero Montiel, en los Esteros del Ypoa y el arroyo Paso Pindó al norte de Villa Florida. También ellos aparecen frecuentemente entre el granito de grano grueso y riolita, en una faja que se extiende del este de Caapucú hasta la Compañía Jhú.

Los pórfidos de granito – riolita fueron explotados en una cantera cerca de Caapucú hasta noviembre de 1996. Actualmente la cantera está abandonada. Las riolitas, riodacitas y dacitas subordinadas ocupan áreas más extensas al norte y noroeste.

Otras ocurrencias se encuentran en el área situada entre el Arroyo Paso Pindó, la Estancia Bruins al norte y al oeste de Villa Florida (ver mapa 3).

La mayoría de estas rocas volcánicas son sub-efusivas, con una textura porfirítica y en parte existen transiciones a los pórfidos de granito-riolita. Solo en algunos lugares, por ejemplo, Arroyo Paso Pindó, cerca de la Compañía Yeré, en la Estancia Casualidad, al norte y oeste de Villa Florida, alrededor de Charará al ceste de Caapucú, se encuentran efusivas como lavas densas, tobas, ingnimbritas y tufitas, Cubas et al, 1998 (ver mapa 3).

Parece que la Suite Magmática de Caapucú es un gran Batolito, donde los afloramientos muestran solamente variaciones texturales que se deben a distintos niveles de emplazamientos, pero la intrución de la rocas magmáticas del mismo ocurrieron más o menos sincronicamente en diferentes pulsos.

La mayoría de las veces el granito de grano grueso parece ser la roca más antigua de la Suite (diques de microgranito y riolita en granos gruesos), pero cerca de la Companía Costa Jhú, se encuentranbloques de microgranitos en el techo de granito de grano grueso, los cuales estan inyectados por granitos gruesos, Cubas et al. 1998.

Las rocas de la Suite Magmática Caapucú no están afectadas por metamorfismo regional, pero procesos autometamórficos e hidrotermales alteraron en partes a las rocas, especialmente en las proximidades de fallas o en zonas cataclásticas que formaron minerales pirofiliticos, sulfuros y óxidos de hierro, cubas et al, 1998 (ver mapas 2,3).

Fue una tectónica distencional y cizallamiento, cuya actividad ya había empezado en el Ciclo Brasiliano y ha continuado hasta el Terciario. Ella es responsable de la formación de fallas y de zonas cataclásticas con la alteración hidrotermal de las rocas afectadas, también del emplazamiento de diques y del ascenso de todo el Precámbrico del Sur del Paraguay, Cubas et al, 1998.

Sobre estos se localizan afloramientos remanentes de sedimentos Ordovicico-Silúrico, que cubren discordantemente a las magmatitas antes mencionadas (ver mar a 3).

Las estructuras tectónicas más antiguas tienen orientación general noreste, mientras que las emplazadas en las magmatitas más jóvenes, predominantemente son norte-sur y noreste hacia el oeste de la región estudiada.

Diques de basaltos cortan a las granodioritas de Centu-Cué, en las proximidades de Villa Florida, dicho afloramiento posee una dirección preferencial noroeste – sureste, otra ocurrencia de roca básica en forma de dique se encuentra en el predio de la Estancia Bruins y está emplazada en una zona de falla de dirección norte – sur, entre un pequeño afloramiento del Grupo Paso Pindó y riolitas efusivas del tipo Charará, cubas et al, 1998.

La faja Paraguay – Araguaia de Mato Grosso continua al Sur de Paraguay y está representada por rocas del Grupo Paso Pindó y la Suite Magmática Caapucú, aparentemente esta estructura termina en el Río Tebicuary, donde está en contacto con el Complejo Tebicuary; este Complejo probablemente forma parte del Craton del Río de la Plata o de la Faja Ribeira del Este Brasilero, cubas et al, 1998.

En Caapucú, al suroeste, las intrusiones relacionadas al evento del Ciclo Brasiliano atraviesan a las rocas más antiguas de edad Brasiliana (Grupo Paso Pindó 600 M.a.) y de edad Trans-Amazónica (2.000±200 M.a.Suite Villa Florida). Dicha Suite limita al sur con el Graben de Santa Rosa, tambiénd e edad Mesozoica, en las cercanías de San Juan Bautista, Cubas et al, 1998 (ver mapa 3).

A modo general las estructuras del Precámbrico Sur del Paraguay evidencia la influencia de dos sistemas tectónicos (ciclo Trans-Amazónico y Ciclo Brasiliano). Así las direcciones Norte-Sur y Noroeste-Sureste, tienen su relación con la evolución y consolidación de la faja plegada del Cinturón Paraguay - Araguaia, sobre el basamento antiguo (Suite Villa Florida de edad Trans-Amazónica, 2.000±200 M.a.) de dirección estructural principal Noreste-suroeste (foliación y ejes de pliegues), aunque también existen direcciones noreste-suroeste, más nuevas consideradas como subordinadas y coincidentes con fallas de empujes en el contacto norte de la suite Villa florida y el Grupo Paso Pindó, cubas et al, 1998 (ver mapa 3).

El Grupo Paso Pindó en general, tiene estratos, esquistosidad y pliegues de dirección noroeste-sureste y buzamientos al noreste, considerados como la dirección principal del Ciclo Brasiliano, Cubas et al, 1998.

E.

Las rocas del ciclo brasiliano (Grupo Paso Pindó y Suite Magmática Caapucú) fueron afectadas por fracturamiento norte – sur, que también se relaciona con el margen oeste-noroeste de la Cuenca del Paraná, por el cinturón Paraguay – Araguaia, el cual partiendo del Paraguay, atraviesa en dirección norte – sur, todo en su límite occidental.

Una tectónica de fracturamiento post-orogénico asociada a la intrusión de las rocas magmáticas de la Suite Caapucú, formaron los conductos para las efusivas, intrusiones de diques ácidos y a las soluciones hidrotermales tardimagmáticas, Cubas et al, 1998 (ver mapa 3).

Tectónica distensiva con fracturamiento, produjeron fallas normales y de cizalla más jóvenes, probablemente iniciada en el Pérmico Superior, continuo hasta el subreciente, Cubas et al, 1998 (ver mapa 3).

El área de estudio fue sujeta a intensa deformación y metamorfismo durante el evento tectónico del Ciclo Trans-Amazónico, deformación y magmátismo en el Ciclo Brasiliano, Cubas et al, 1998.

Las direcciones principales de las fracturas son este-oeste, consideradas como las fallas más antiguas, reactivadas en el Ciclo Brasiliano durante y después de la intrusión de las rocas magmáticas de la Suite Caapucú, dichas estructuras son coincidentes actualmente con las zonas cataclásticas encontradas en las riolitas, dende además ocurren alteraciones hidrotermales tardimagmáticas que han trasnformado la composición de la roca original, resultando en mineralizaciones pirofilíticas (ver mapas 2,3), piritas y otros minerales de hierro.

Noroeste – sureste son fallas de tipo normales y horizontales, con las que coinciden el emplazamiento de la mayoría de los diques riolíticos. Las fallas de dirección noreste y suroeste parecen ser complementarias del mismo sistema. Estas son de menor frecuencia y tamaño, pero normalmente contienen diques de cuarzo, Cubas et al, 1998.

Norte Sur generalmente se tratan de fallas direccionales y a veces normales, afectan principalmente a la Suite Caapucú y también las rocas sedimentarias del Grapo Caacupé. Son consideradas como fallas más jóvenes; algunas de las fallas de esta dirección constituyen las zonas de emplazamiento de diques de basaltos más jóvenes, Cubas et al, 1998.

IV.- CONSIDERACIONES GENERALES SOBRE ARCILLAS DEL ÁREA

Pre lominan en el área arcillas alóctonas, resultados del itemperismo de materiales puzolánicos de otras regiones, transportadas por lluvias de cenizas provenientes de zonas volcánicas lejanas, muchas redepositadas por corrientes de agua. Son materiales de planicies aluviales de composición silícea o silico-aluminosa, dispuestos en forma de lentes o bolsones irregulares friables, de color blanco ceniza, constituido por agregados microcristalinos de origen no tota mente determinado, mostrando ciertas características de procesos volcánicos.

El transporte de estos materiales es fluvio-eólico, cuyo principal responsable es el sistema de tributarios del Río Tebicuary. También existen paleo suelos o suelos enterrados, estos fueron el resultado de varios ciclos deposicionarios, erosión y retrabajamiento, Zarza. 1991.

Existen dos tipos de materiales puzolánicos, el primero denominado material puzolánico común, con ciertas alteraciones de sus componentes, y el segundo, denominado como Totatí, menos alterado que el anterior, de granulometría fina y puede ser utilizado como aditivo en la fabricación de pinturas, tambien existe en la localidad de Areguá, Departamento Central.

Los materiales puzolánicos son heterogéneos, con fracciones muy finas y gruesas. Están en planicies aluviales (ver mapas 2,3), también asociadas con lagunas intermitentes o pequeñas cuencas, donde el sistema de drenaje sufre pequeñas variaciones direccionales, Zarza, 1991 (ver mapas 2,3).

Los materiales semiconsolidados son por la acción de la circulación de soluciones freáticas cargadas con minerales, o por la misma reacción de los vidrios volcánicos muy vulnerables a las alteraciones, acentuado por nuestro sistema climático. Así los procesos de desvitrificación no están ausentes, transformando constantemente estructuras y quimismos con ingerencias externas. Los materiales puzolánicos de origen volcánico se formaron a partir de paroxismos muy explosivos, donde la característica principal es la viscosidad magmática, que puede cambiar en segundos sus estados fluidales, contenido de agua juvenil o freática, gases descondensados y demás factores del min so aparato volcánico.

Jana Jaker Comment

Los materiales piroclásticos explosivos, también posteriormente siguen siendo afectados por procesos supergénicos, y por que no, del tipo endógeno, con cementaciones del grado seolítico, que favorece porosidad, circulación de líquidos, facilitando cierta diagenesis. El tipo exógeno con la formación de minerales arcillosos, para la actividad puzolánica obra negativamente, nocivo para el cemento Portland, Zarza, 1991.

Los procesos intempericos son responsables de diagénesis en materiales puzolánicos, las camadas superiores por lo general adquieren color negruzco por acción húmica, restos de antiguos humedales que contienen materia orgánica más tarde carbonizada por ausencia de oxigeno.

La plasticidad que adquieren estos materiales es por fracciones coloidales que actuan lubricando el conjunto, pueden ser del tipo montmorrillonítico (ver tablas y figuras)

Cuando más vitreos son los componentes son más reactivos para conformar compuestos estables, se debe a que la energía potencial de la parte atómica en estado amórfo es mayor, lo que favorece la formación de calcedonias, incipientes sectores concrecionales, esqueletos, etc.

Ya es sabido que los materiales puzolánicos llevan vidrios, amorfos y seolitas, activados por compuestos calcicos. Llevan también fragmentos de cuarzos, feldespatos, ferromagnesianos, óxidos, etc., que son reaccionantes debiles hasta inhertes. La porción negativa para los cementos corresponde a los arcillominerales que es beneficioso para este trabajo y la porción de materia orgánica.

Los depósitos son varias veces cortados por zanjas de erosión, relacionadas con tributarios de carácter permanentes o intermitentes de cursos de aguas mayores. Los grados de alteración son variados según hayan sido expuestos al intemperismo, generándose así arcillominerales con diferentes grados de plasticidades (ver lista de mapas, figuras y tablas).

Extensas áreas se encuentran cubiertas de estos materiales, depositados sobre basamento cristalino sano en algunos casos y por lo general sobre suelos residuales, propios de planicies aluviales, de diferentes granulometrias, donde varios ciclos deposicionales intervinieron, ya sea por erosión y retrabajamiento (ver lista de mapas, figuras y tablas).

También existen lentes solapados en diferentes grados, los colores predominantes son el pardo, pardo claro, ceniza, gris, gris claro y blanco.

La influencia fluvial también puede asociar gravillas al material puzolánico, Orué, 1996, le designa con caracter formacional "FORMACIÓN SANTA ROSA" de edad cuaternaria.

Por razones de practicidad, en la presente investigación se han analizado las pirofilítas, tobas soldadas y el talco de la región, de modo que se incluyeron dentro de la investigación (ver lista de mapas, figuras y tablas).

V.- RESULTADOS Y DISCUSIONES

つうこうけつけつううううううううりょう

- Las muestras N° 3100, 3106, 3372, 3408, 3418 y 3444, son altas en
- La muestra Nº 3105 tiene elevado contenido de óxido de magnesio
- La muestra Nº 3544, es la que posee el mayor porcetaje de óxido de sodio
- La muestra Nº 3103, contiene porcentaje de óxido de potasio y óxido de calcio que pueden afectar el punto de fusión
- La muestra Nº 3381, contiene porcentaje de óxido de potasio y óxido de sodio que pueden afectar el punto de fusión
- La muestra N° 3091, puede contener minerales smectíticos
- La muestra N° 3094, adquiere buen color cerámico a los 1000° y 1100° C
- La muestra N° 3098, adquiere buen color cerámico a los 1000° y 1100° C
- La muestra N° 3102, adquiere buen color cerámico a los 1000° y 1100° C
- La muestra Nº 3248, adquiere buen color cerámico a los 1000° y 1100° C
- La muestra N° 3249, adquiere buen color cerámico a los 900°, 1000° y 1100° C
- La muestra N° 3250, a los 1000° y 1100° C, debe ser aditivada para la producción de ladrillos blancos
- La muestra N° 3251, adquiere buen color cerámico a los 900°, 1000° y
- La muestra N° 3252, adquiere buen color cerámico a los 1000° y 1100° C
- La muestra N° 3253, adquiere buen color cerámico a los 1000° y 1100° C La muestra N° 3254, adquiere buen color cerámico a los 900°, 1000° y
- 1100° C
- La muestra N 3257, adquiere excelente color cerámico a los 900°, 1000° y 1100° C, pero debe aditivarse

- La muestra N° 3258, se blanquea a los 1100° C
- La muestra N° 3372, se hace dificil de moldear
- La muestra N° 3381, adquiere buen color cerámico a los 1000° y 1100° C
- La muestra N° 3383 adquiere buen color cerámico para ladrillos blancos a los 1000° y 1100° C, pero debe ser aditivada
- La muestra N° 3408, adquiere excelente color cerámico a los 900°, 1000° y 1100° C, pero debe ser aditivada
- La muestra Nº 3418, se blanquea a los 1100° C
- La muestra N° 3442, adquiere buen color cerámico para ladrillos blancos a los 1000° C, pero debe ser aditivada
- La muestra Nº 3444, se blanquea a los 1100° C
- La muestra N° 3455, es difícil de moldear
- La muestra N° 3544, se físura a los 900°, 1000° y 1100° C, pero adquiere muy alta dureza, podría investigarse como vitrificante
- La muestra Nº 3102, tiene tendencia a la sinterización a los 1100° C, por estar presentes las tres sales, más hierro y poca alumina
- La muestra Nº 3248, en las temperaturas de 1000° y 1100° C presenta cierta aspereza, posiblemente por falta de más molienda
- La muestra Nº 3249, en las temperaturas de 900° 1000° y 1100° C presenta cierta aspereza, posiblemente por falta de más molienda
- La muestra Nº 3251, en las temperaturas de 900°, 1000° y 1100° C presenta cierta aspereza, posiblemente por falta de más molienda, a los 1100° C. "Presenta tendencia a la sinterización, posiblemente por poca alumina y contenido de óxido de hierro
- La muestra N° 3253, a los 900°, 1000° C presenta eflorescencias salinas por no fijarse en otros compuestos a baja temperatura, también ocurre con las muestras N° 3254 y 3257
- La muestra N° 3408, a los 1100° C, es un poco áspera, posiblemente por falta de más molienda y alto porcentaje de hierro
- La muestra N° 3455, se deforma al moldear, posiblemente por bajo IP La investigación abre una serie de discusiones para estudios posteriores, tales como las muestras Nº 3455, 3446 y 3407 que se presentan en la disyuntiva de arcillas puzolánicas y/o caolínicas.

VI.- CONCLUSIONES

Se har localizado materiales arcillosos con diferentes aptitudes cerámicas en los Departamentos de Misiones y Paraguari, fueron caracterizados mediante ensayos químicos y físicos mecánicos. También se estableció un nuevo sistema de clasificación de materiales arcillosos de acuerdo a origen, propiedades y usos, exclusivo para esta investigación.

Las muestras localizadas que pueden ser utilizadas sin aditivos corresponden a las N° 3094, 3097, 3247, 3248, 3249, 3251 3253;

La muestra Nº 3094: Ocurrencia Nº 4, para uso artesanal, ladrillos rojos o semi rojos

La muesrta N° 3097: Ocurrencia N° 7, para producción de ladrillos blancos o semi blancos muy utilizados en la construcción

La muestra N° 3247: Ocurrencia N° 18, para la producción de ladrillos rojos o semi rojos

La muestra N° 3248: Ocurrencia N° 19, para la producción de ladrillos rojos o semi rojos

La muestra N° 3249: Ocurrencia N° 20, para la producción de ladrillos rojos semi rojos

La muestra N° 3251: Ocurrencia N° 22, para la producción de ladrillos rojos o semi rojos

La muestra N° 3253: Ocurrencia N° 24, para la producción de ladrillos rojos o semi rojos

Se puede comprobar que existen dos tipos de arcillas puzolánicas, las dificilmente moldeables, que contienen componentes menos alterados y/o intemperizados, mientras que las más trabajables presentan componentes alterados o intemperizados que le dan trabajabilidad al conjunto.

Fueron descubiertos materiales caolínicos con buenas aptitudes cerámicas, que en esta investigación los denominamos materiales caolínicos primarios por encontrarse sobre la misma roca madre, otras clasificaciones le llaman materiales caolínicos residuales, nos parece más apropiado primario por razones prácticas. En el precámbrico sur fueron identificadas lateritas que correctamente tratadas pueden llegar a ser utilizadas como excelentes materiales de construcción, pero es aun más importante resaltar son los altos contenidos de alumina, que indican serias posibilidades de yacimientos Bausíticos cercanos.

Esta es la primera investigación que reporta materiales caolínicos primarios con excelentes aptitudes no solamente en el campo cerámico.

Otra conclusión preliminar de esta investigación, es la mejor calidad del vacimiento pirofilítico de Charará con respecto al de Yeré, el mismo puede ser utilizado para montar factorías de producción estatuarias, tallados, sanitarios, mesadas, cargas industriales, crisoles, aisladores, aditivos, cerámica pirex, esculturas, balaustres, etc.

La mayoría de las arcillas localizas en el Precámbrico Sur de Paraguay, corresponden al tipo puzolánico, por lluvias de cenizas volcánicas sobrevenidas curante la gestación del Cordón Andino y en menor proporción a vulcanismos locales, ellas fueron depositadas, erosionadas y redepositadas en varias exportunidades conformando paleo recodos de cursos de aguas extintas.

Los materiales caolínicos localizados son del tipo primario según la clasificación de este trabajo, que por molienda completa de los componentes se enriquece el producto en silice, pero con una separación de las gravas residuales aumentan los contenidos de alumina.

Las muestras ricas en alumina corresponden a las Ocurrencias Nº 10, 16, 30, 36, 38 y 40, y muchas de ellas asociadas a filtraciones que pueden beneficiar a la concentración de alumina.

Las arcillas caolínicas primarias localizadas en la región son las más antiguas del Paraguay, por yacer en la misma roca fuente cristalina.

VII.- RECOMENDACIONES

Se recomienda:

- La evaluación de los yacimientos caolínicos primarios o residuales localizados en esta investigación:
- Implementar campañas de prospección de yacimientos ricos en alúmina en zonas de mucha filtración por lavado de silice
- Realizar ensayos pilotos de tallado de balaustres, capiteles, estatuas, fuentes y demás esculturas con las pirofilítas del sur
- Realizar ensayos pilotos de aisladores eléctricos de porcelana, con ensayos en bancos de pruebas
- Ensayar todos los materiales con tendencias refractarias localizados para someterlos a ensayos pirométricos
- Realizar diferentes tipos de separaciones para los materiales caolínicos primarios localizados
- Someter a las muestras a ensayos de Rayos X
- Incursionar en el campo de los esmaltes de temperaturas, para abrir nuevas investagaciones
- Continuar las investigaciones en el área precámbrica, por presentar lugares aun no visitados
- Investigar en un capitulo aparte el talco y la serpentinita por sus multiples usos y asociaciones minerales
- Evaluar las ocurrencias a ser objeto de tratamiento, antes de imprimir medidas de inversión, teniendo en cuenta que las referidas en este trabajo son de carácter puntual sin abundar en parámetros más expeditivos.
- Los materiales localizados en el área pueden convertir a la región de ocupación ganadera al nuevo rubro de minería, que traería ocupación y or ortunidades de ingresos a la población local.

Worlu's Geruin

VIII.- BIBLIOGRAFÍA

Alvarenga, D. y Spinzi, A. 1.996 - "Esmaltes Cerámicos para materiales de Construcción" Tomo 1 y 2 -Dirección de investigación Postgrado y Relaciones Internacionales (DIPRI), Universidad Nacional de Asunción.

Astudillo Solar, T, 1.992, Estudio de Mercado sobre la Viabilidad de Comercializar en el Paraguay Porcelana Fina. y Cerámica Blanca, Consultora Euro América para Cooperación Geológica Paraguayo -Alemana. DRM - 3GR, 33P.

Anónimo, 1.966, Cuadricula 40 ltá - Ministerio de Obras Públicas y Comunicaciones.

Anónimo, 1.966, Cuadricula 41 Coronel Oviedo -Ministerio de Obras Públicas y Comunicaciones.

Benítez, J-Spinzi, A y Muff R., 1.996 -Ocurrencias y Usos de algunos materiales industriales en Paraguay -XXXIX Congreso Brasilero de Geología - Volumen Nº 5.

Bertel, W. 1.994. Strukturell - Sedimentare Entwicklung des Blocks Von Asunción, Paraguay, Diplonkartierung & Diplomarbeit, Institut Für Geologie und Palaontologie Technische Universität Clausthal, 171 p.

Bateman, A. 1.978 Yacimientos Minerales de Rendimiento Económico. 5ta Edición, Barcelona. Omega. 975 p.

Bouche, P. 1.995, Estudio de Prefactibilidad para la Inslalación de una Industria de Productos Cerámicos de uso sanitario y uso eléctrico, tomo N° 1 ALADI.

Cubas, N., Garcete A., Mainhold k., 1998 – Texto Explicativo – Mapa geológico del Paraguay – Hoja Villa Florida 5468. Escala 1:100.000. Cooperación Geológica Paraguayo – Alemana, DRM – BGR. Asunción, Paraguay. 74 p.

Deer Howie and Zussman, 1.992, An Introduction to the Rock Forming Minerals, Longaman Esset, 696 p.

Delgado, M. González, P. García R. Curso sobre materia prima para cerámica y vidrio. Sociedad Española de Cerámica y Vidrio. Madrid, 29-65 P.

Fassbender H. 1975. Química de Suelos. "Con énfasis en suelos de América Latina". OEA - AID. Turrialba -Costa Rica - 398 p.

Fernández, J. 1.992- Informe de Asistencia Cerámica a CREDICOP. Areguá - Paraguay- inédito.

Gómez, D, 1.991 -Consideraciones Morfoestructurales y Estratigráficas de la Antiforma y su relación con la explotación de aguas subterráneas. MEMORIAS del 1er. Simposio sobre aguas subterráneas y perforaciones de pozos en el Paraguay, Pág. 131 y 143.

Hald, P, 1.952, Técnica de la Cerámica, Omega, Barcelona - España - 319 p.

Harringtong, H, 1.955- Geología del Paraguay Oriental, Universidad de Bueros Aires, Facultad de Ciencias Exactas Físicas y Naturales. Contribuciones Científicas. Serie "E". Geología, Tomo Nº 1 p 82.

- Harringtong, H. 1.972 -Silurian of Paraguay -Correlation on South American Silurian Rocks, Geol. Soc. Am., Spec. 133p.
- Harvey, D., 1.978- Cerámica Creativa, CEAC. Barcelona España, 129 p.
- Hurlbut, C., 1.973, Manual de Mineralogía de Dana, Reverté, S.A" Barcelona España 653p.
- Hurlbut, C.S., Klein, C. -1.991 Manual de Mineralogía de Dana, Reverte S.A., Barcelona -España. Tercera Edición 564 p.
- INTEC -Chile, 1.990 -Diagnóstico de la Minería no. Metálica de Chile Gerencia de Desarrollo de la Cooperación de Fomento de la Producción: CORFO, Santiago. Vol. 1 582 p.
- Kirch, H. -1.965 Mineralogía Aplicada. Editorial Universitaria de Buenos Aires Rca. Argentina 274 p.
- Lorenz, W., 1.992, Notas del Curso Compacto sobre Materiales no metálicos y su utilización Económica -Cooperación Geológica Paraguayo -Alemana DRM -BGR.
- Legget, R. y Karrow P. -1.986 Geología Aplicada a la Ingeniería Civil México.
- M.O.P.C., 1.977, Manual visualizado de Ensayos Editado por el Ministerio de Obras Públicas de Venezuela.
- M.O.P,C., 1.990, Informe sobre Caolín Dirección de Recursos Minerales Asunción, Paraguay. Informe Interno.
- Martino, J. Ramírez. L. Rojas. R y Lucía. M. 1,976 -Estudio de las arcillas y arenas -zona Alto Paraná INTN. Asunción, Paraguay -46 p.
- Martino, J. Ramirez, L. Villalba J. y Careaga C., 1.980 -Proyecto de Investigación Preliminar -Zona Departamento de Villa Hayes. Evaluación de arcillas, OEA- INTN Asunción, Paraguay.
- Norton, F., 1.960- Cerámica para el artista alfarero -Continental SA. México 593p. Ovelar, J.C. -1.987- Programa de investigación de arcillas de quema blanca -

Instituto Nacional de Tecnología y Normalización-Paraguay.

- Orué, D., 1996. Sintese da Geología Do Paraguay Oriental, com Enfase para o Magmatismo Alcalino Associado. Disertação de Mestrado. Universidade de São Paulo, Intituto de Geociencias Brasil 163 p.
- Pardi, L. y Jornada A, 1.994 Municipio de Parobé –R.S Informaciones Basicas para a Gestao Territorial -Potencial Minierao para nao metálicos -Programa técnico para o gerenciamiento de regiao metropolitana de Porlo Alegre CPRM ó Servicio Geológico do Brasil. Porto Alegre -Brasil- 114 p t
- Palmieri, H -Minerales Industriales para su aplicación inmediata en el sector Geológico -Minero STP; PNUD y MOPC 16p
- Petrascheck., 1965 Yacimiento y Criaderos Omega, Barcelona, España 563 p
- Pfeiffer, C., 1982 Diccionario Bíblico Arqueológico Editorial Mundo Hispano Printed USA 767 p.
- Putzer, H., 1962 Die Geología Von Paraguay -Beltrage Reg. Geol. Erder. Bd 2 Berlín 183p
- Risiga, H. y Asociados, 1.984 -Informe Técnico, Inédito -Santa Fé -Rca. Argentina.

Ramírez, L. y Vera, G., 1.979- Estudio Preliminar de Yacimientos de arcillas (Pilar), INTN-OEA – Asunción, Paraguay - 83p.

Sagredo, J., 1974- Diccionario Rio Duero - Geologia y Mineralogia - Ediciones Rio

Duero - Madrid - España 238 p.

Singer, F & Singer S.S., 1964 - Industrielle Keramik Springer Verlafg - 3° Tomo

Spinzi. A., 1.983 - Consideraciones sobre una Formación de conglomerados en Aregúa y alrededores, informe científico - Vol.4, N° 1 - ICB - UNA Asunción, Paraguay 86-94p

Spinzi, A., 1987 - Estudio de Materiales cerámicos en la zona de Chaco-í -

Paraguay- Cerámica Itauguá -Informe Interno -Inédito.

Spinzi, A., 1.988 - Evaluación de materiales caolínicos para cerámica, en la Jurisdicción de Itaguá, Paraguay - Cerámica Itaguá, informe interno, 14 p

Spinzi, A. y Velázquez C., 1.995 -Arcillas de Centro Oeste del Paraguay Oriental (Caracterización Tecnológica Potencial y Usos) Tomos 1 y 2 - Cooperación Geológica Paraguayo -Alemana, DRM-BGR. Ministerio de Obras Publicas y Comunicaciones -Asunción, Paraguay - 63 p.

Spinzi, A. y Benitez J., 1.996 -Caracterización Puntual de las Arcillas del Bajo. Chaco - Cooperación Geológica Paraguayo -Alemana -DRM - BGR -Ministerio de Obras Públicas y Comunicaciones - Asunción, Paraguay -19p.

Spinzi, A., 1997 - Arcillas del Bajo Chaco Paraguayo y su comportamiento pirométrico - Dirección de Recursos Minerales - Ministerio de Obras Públicas y Comunicaciones —Asunción, Paraguay.

Spinzi A. y Benitez J., 1.998 -Materiales para usos cerámicos del Craton Río Tebicuary (Informe preliminar) - Ministerio de Obras Públicas y

Comunicaciones - Asunción, Paraguay.

Salas, J., 1.954 - Mecánica de Suelo - Editorial Dossat, S.A. -Madrid - España.

Spinzi, A., 1999 – Resistencia térmica de las arcillas de los Departamentos Central, Cordillera y Paraguarí – Paraguay – Ministerio de Obras Públicas y Comunicaciones - Subsecretaría de Minas y Energía – Dirección de Recursos Minerales – Asunción, Paraguay – 20 p

Terzaghi, K., 1.975 - Mecánica de Suelo: En la Ingenieria Práctica - el Ateneo S.A.

Barcelona - España -722p.

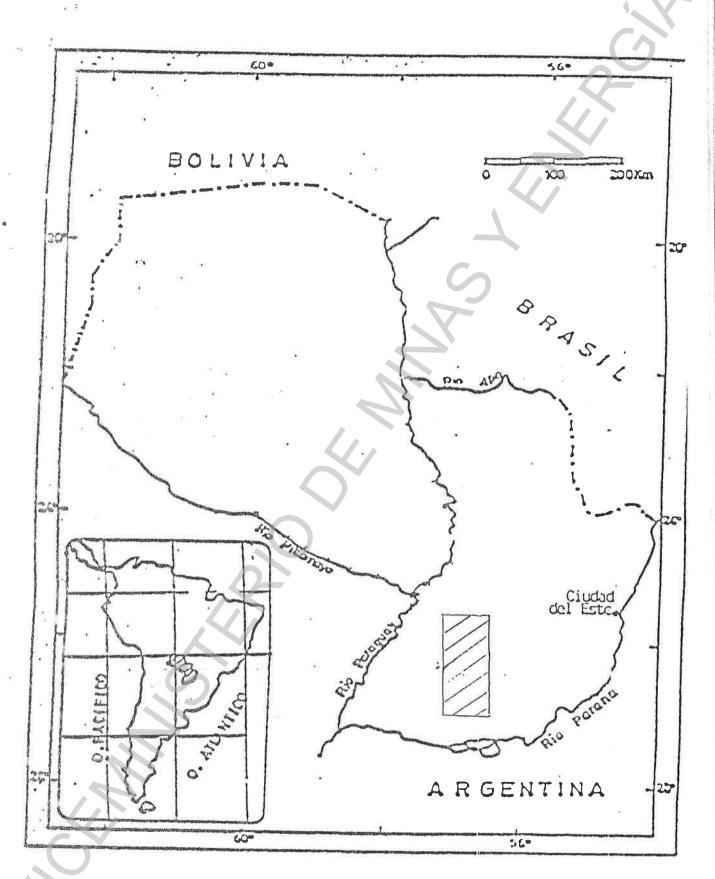
Velde, B., 1.992 - Introduction to clay minerals, Chapman and Hall - London 198 p.

Wiens, F., 1.992 - Datos Estadísticos de la Producción Mineral en el Paraguay - Informe interno - Cooperación Geológica Paraguayo - Alemana - DRM - BGR - Asunción, Paraguay - 10 p.

Wolfart, R., 1961 - Stratigraphie und fauna des älteren Paläozoikums (Silur-

Devon) in Paraguay -Geol. -JB. Bd. 78: Hannover -29 - 102 p

Wiens, F., González. M., Muff, R., 1.993 - Desarrollo tectóno - sedimentario del Bloque Asunción, Paraguay - XII - Congreso Geológico Argentino y 11 Congreso de Exploración de Hidrocarburos - Actas - Tomo Y. 27-36 p.


Wiens. F., González, M., 1.994 - Texto Explicativo - Mapa Geológico del Paraguay - Hoja 5496 Paraguari - Escala 1: 100.000 - Informe Interno - Cooperación Geológica Paraguayo - Alemana - DRM - BGR - Asunción, Paraguay - 39p.

González, M., Wiens, F., 1.994 - Texto Explicativo - Mapa Geológico del Paraguay - Hoja 5569 San José - Escala 1:100.000 - Informe interno - Cooperación Geológica Paraguayo Alemana - DRM - BGR - Asunción, Paraguay - 30 p.

Zarza, P., 1991 – Estudo Das Puzolánas Naturais de Ybytimí, La Colmena, Paraguay Oriental – Dissertação de Mestrado – Universidad Estadual Paulista "Julio de Mesquita Filho" UNESP – Instituto de Geociencias e Ciencias Exatas – Brasil – 151 p.

IX.- ANEXOS

ににはアイマンクラクラクラク

MAPA DE UBICACION - 1

こうとうとうとうとうと

	Muestreo	Perfor. 0,30 -1,30 m		Idem	Idem		
	Peso Específico ²	1,89		1,86	1.82		
	Humedad ¹ %	41,26		Idem	Idem		
ho	Temperatur a °C	006		1000	1100		
Caracterización del Bizcocho	Color de quema	Amarillo amarronado, 10		Amarillo rojizo, 5 VR 6/8	Rojo	amarillento, 5	YR 5/6
Caraele	% Contrac	2,25		9,8 -0,15	Muy	fisura	qo
	% Absor-	8,6			9,02		
Índica	Plástico	40,47		Idem	Idem		
Límite	Líquido	81,90		Idem	Idem	2	
Límite	Plástico	41,43	3	Idem	Idem		
Porosidad		16,3		18,4	16,4		
Color	Crudo	Gris oscuro, 2.5 Y	R-4/1	Idem	Idem		
N° de	Muestras	3091	2001	1605	3091		

¹ Humedad de la pasta en el momento de la preparación de la probela ² Peso específico de la probela cocida

Observaciones y recomendaciones: Presenta fisuras, probetas muy duras en las tres temperaturas. Mohs H>3,5. Puede contener minerales Smectíticos. Debe investigarse la alta dureza. Probable tipo de material según ensayos técnicos: Arcilla Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Aditivo plastificante

TABLA Nº 1: OCURRENCIA 1

			Caract	Caracterización del Bizcocho	01	Himselful 1	Bene	
Líquido Plástico	tico	% Absor- ción	Contrac	Color de quema	Temperatur a °C	% %	reso Específico 2	Muestreo
24,90 8,70	70	12,	1 -0,25	8,70 12,4 -0,25 Amarillo rojizo, 7,5 YR 7/6	006	17,41	1,87	Perfor. 0 – 1 m
Idem Idem	m _s	14,	05'0-	Idem 14,1 -0,50 Amarillo rojizo, 5 YR-7/8	1000	Idem	1,86	Idem
Idem Idem	g	13,	7 0,10	Idem 13,7 0,10 Amarillo rojizo, 5 YR-6/8	1100	Idem	1,93	Idem

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla puzolánica Posible uso del material: Ladrillo blanco y/o rojo con aditivo Observaciones y recomendaciones: Sin fisuras. Mohs $\geq 3,5$ Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 2: OCURRENCIA 2

M

					Т
	Muestreo	Calicata 0	l m	Idem	Idem
	Peso Específico ²	1,77		1,78	1,77
	Ir Winedad ¹			Idem	Idem
ho	Temperatur a °C	900		1000	1100
Caracterización del Bizcocho	Color de quema	15,5 -0,20 Amarillo rojizo,	7,5 YR-7/6	16,6 -0,40 Amarillo rojizo, 7,5 YR -7/8	17,4 -0,15 Amarillo rojizo, 5 YR-7/8
Caracte	% Contrac	-0,20		-0,40	-0,15
	% Absor- ción	15,5		16,6	17,4
,	Plástico	3,53		Idem	Idem
1 6	Líquido	20,90		20,90	20,90
T family	Plástico	17,38		Idem	Idem
Donosidod	T Of Column	27,6	2	29,7	31,0
۲۰۱۵۲	Crudo	Marron	roj. claro, 2,5 YR- 6/4	Idem	Idem
No.do	Muestras	3093		3093	3093

 $^1\,\mathrm{Humedad}$ de la pasta en el momento de la preparación de la probe
ta $^2\,\mathrm{Peso}$ especifico de la probe
la cocida

Observaciones y recomendaciones: Presenta tendencia refractaria, sin fisuras. Mohs < 3,5 Probable tipo de material según ensayos técnicos: Arcilla puzolánica Posible uso del material: Ladrillo blanco a semi rojo aditivado Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 3: OCURRENCIA 3

Caracterización del Bizcocho	Andice % % Feso Plástico Absor- Contrac Color de quema Temperatur % Especifico 2	22,21 15,6 1,75 Amarillo rojizo, 900 26,79 1,75 Perfor. 0—	5 YR-7/8		Idem 14,9 2,90 Idem	T1 07
	% % Absor- Contrac	1,75	5 Y		14,9 2,90	Idem 87 730 L
,	Linute Linute Plástico Líquido F	24,34 46,85	***************************************		Idem Idem	Idem
	Color Porosidad Crudo	rrón 27,4	, 7,5	-5/3	lem 27,0	170
-	No de Co Muestras Cr	3094 Ma		YR	3094 Id	T

 $^{^1\,\}mathrm{Humedad}$ de la pasta en el momento de la preparación de la probeta 2 Peso específico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras; buen color cerámico a los 1000° C y 1100° C. Mohs ≥ 3,5 Posible uso del material: Cerámica artesanal. Ladrillos rojos y/o semi rojos Probable tipo de material según ensayos técnicos: Arcilla puzolánica Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 4: OCURRENCIA 4

マスマンコンコンフラファック ファ

		Muestreo		Perfor. 0 -	1 m	****		Idem			Idem	
		Peso Específico ²		1,74 Pe				1,74			2.04	
		Humedad ¹ %		34,29				Idem		T.3	Idem	
	10	Temperatur		006				1000		1100	1100	
	Car acterizacion del Bizcocho	Color de quema		25,22 16,9 1,80 Amarillo rojizo,	5 YR-6/8			Idem 1/,1 2,40 Amarillo rojizo,	5 YR-7/8	Idem	יוויאהי	
CACCAST T	Cal acto	% % Absor- Contrac		1,80				2,40		6.95	2762	
		% Absor-	TOUR P	16,9			,	1/,1		7.7 6.95		
	Índico	Plástico	00.70	77,57			1	Idem		Idem		
	Limite	Líquido		26,10			7.1	Idem		Idem		
	Límite Plástico		30.00	00,00			Tologo	Idelli		Idem		
	Porosidad			29,5		29,5		300	250	4	15,9	
	Color	Crudo	Marrón	Grisaceo.	10 YR-	5/2	Idem		1.1	Idem		
K	N° de	Muestras	3095				3095		2000	CKNC		

¹ Humedad de la pasta en el momento de la preparación de la probeía ² Peso especifico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras; buen color cerámico a los 1000° y 1100° C. Mohs > 3,5 Probable tipo de material según ensayos técnicos: Arcilla puzolánica Posible uso del material: Ladrillos rojos y/o semi rojos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 5: OCURRENCIA 5

	1	_	_	-				_	_	_				
		Muestreo			Calicata 0 -	1.20 m				Idem			dem	ותכחו
		Peso Específico 2			1,64					1,63			1.70	
		Humedad '			23,54					Idem			Idem	
ho	140	Temperatur	a °C		006			1000		ı	1100			
Caracterización del Rizcocho	Oran an income	Color de quema		Λ 220 -: 11.	C,2 C,23 AMIMINIO FOJIZO,	1,5 YR-7/6			A 2000-711 - 10	Autaillo, 10	YR-8/6	17.5 230 Amerillo roises	ALLIALINO IOJIZO,	7.5 VR-7/6
Caracte		Absor- Contrac		035	7,0				0.75	2,5		230	2	
	100	Absor-	cion	200	,,,,				Idem 195 075	26,74		17.5	2	
**	Índice Plástico			7,21			Idem			Idem				
	Límite Líquido		1	32,05			Idem			Idem				
Límite Plástico		2404	74,84			/	;	Idem		17	Idem			
Porosidad	1	30,1		0.10	51,9		20.0	7,27						
Color	Cenda	ann io	Grie	CITO	Rosaceo	5 YR-	6/2	Labour	Idein		Idem	TION		
N° de	Minetrae		3096					3005	2020		3096)		

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso específico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla puzolánica Observaciones y recomendaciones: Sin fisura. Mohs < 3,5 Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 6: OCURRENCIA 6

				L			T	F	Т
		Muestreo		Perfor. 0 -	l m			Idem	Idem
		Peso Específico ²		1,85				1,82	1.83
		Humedad ¹ %		19,35			13	Idem	Idem
	ho	Temperatur		006			1000	7000	1100
	Caracterización del Bizcocho	Color de quema		10,80 15,1 Cero Amarillo rojizo	7 IR-//8		Idem	TITAL	Idem
	Caracte	% % Absor- Contrac		Cero			- 0.65		-0,50
			10.1	15,1			Iden 16.4 -0.65		Idem 16,1 -0,50
4.1	,	Plástico	1000	10,80			Idem	T 1	Idem
	Limita	Líquido	30.60	00,00		7.1	Idem	1.1	Idem
	Límite Plástico			7,00		Talen	nacm	Ldom	1 CC111
	Porosidad	Porosidad 27,8				30	20	205	27,5
	Color	Crudo	Marrón	7,5 YR-	5/3	Idem	זתכווו	John	TOTAL
	No de	Muestras	3097			3097	1000	3097	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Observaciones y recomendaciones: Sin fisura. Mohs H ≥ 3,5 Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos Blancos

TABLA N° 7, OCURRENCIA 7

JA.

	Muestreo	Canal 0,60 – 1,60 m	Idem	Idem
	Peso Específico ²	1,43	1,60	1,82
	Humedad ¹ %	33,21	Idem	Idem
ho	Temperatur a °C	006	1000	1100
Caracterización del Bizcocho	Color de quema	1,95 Amarillo rojizo 7,5 YR-7/8	20,6 3,65 Amarillo rojizo 5 YR-7/8	Amarillo rojizo 5 YR-6/8
Caracte	% Contrac	1,95	3,65	7,45
	% Absor- ción	7,86 22,6	20,6	13,4
1.1.1	Plástico	7,86	Idem	Idem 13,4 7,45
I (mile	Líquido	36,00	Idem	Idem
Tímita	Plástico	28,14	Idem	Idem
Porocidad		32,5	31,1	24,5
Color	Crudo	Gris Rosaceo 7,5 YR- 6/2	Idem	Idem
No cie	Muestras	3098	3098	3098

Humedad de la pasta en el momento de la preparación de la probeta

2 Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillo Rojo aditivado

Observaciones y recomendaciones: Sin fisura, buen color cerámico a los 1000° y 1100° C. Mohs H ≥ 3,5

TABLA Nº 8: OCURRENCIA 8

	Γ			1	-		_	T
		Muestreo		Canal 0 – 0,3 m		Idem		Idem
		Peso Específico ²	1,28			1,39		1,77
		Humedad ¹ %		48,86		Idem		Idem
	110	Temperatur)	006		1000		1100
Caracterización del Rizgosko	action del Bizcoc	Color de quema		Amarillo rojizo 7,5 YR-8/6		6,55 Amarillo rojizo	9//-117	15,0 12,25 Amarillo rojizo 5 YR-6/8
Caracte		Contrac	0	3,30		6,55	2000	12,25
		% Absor- ción		34,1		29	000	13,0
	Indice	Plástico	12,86 34,1			Idem		naem
	Límite	Líquido	25 00	06,90		Idem	Idam	Jucili
	Limite	Plástico	1101	to,tt		Idem		TOTAL
:	Porosidad		43.8		, ,	40,4	23.1	1607
-	Color	Crudo	Grie	claro 10 YR- 7/2	7.1	ndem	Idem	
0.0	T. de	Muestras	3099		0000	6606	3099	

 1 Humedad de la pasta en el momento de la preparación de la probeta 2 Peso específico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Posible uso del material: Ladrillos blancos y/o semi rojos aditivados Observaciones y recomendaciones: Sin fisuras. Mohs H ≥ 3,5 Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 9: OCURRENCIA 9

	Muestreo		Canal 0,5 -	1,5 m			Idem	Idom	=
	Peso Específico ²	20	1,69			7.3	Idem	Idem	111277
	Humedad ¹ %		19,42			Idem	TION	Idem	
ho	Temperatur a °C		006			1000		1100	
Caracterización del Bizcocho	Color de quema	P . P J . P J . P J	0,73 19,3 -0,20 Amarillo palido	10-10-67		Idem 21,8 -0,45 Blanco 5 Y-8/1		Idem	
Caracte	% % Absor- Contrac	000	-0,20			-0,45	0,0	1dem 21,9 -0,60	
	% Absor- ción	101	19,0			21,8	0.10	21,9	
,	Plástico	34.7	0,73			Idem	Talent	Idem	
7 (14	Líquido		77,00			Idem	1	Idem	
I Consider	Plástico	15.05	13,23	/		15,25	15 05	12,22	
Donoridad	1 Of Ostude	22.1	33,1		1	37	27.0	2,15	
Color	Crudo	Amortilo.	pálido	2,5 YR-	8/3	Idem	Ldom	Idein	
NO.10	Muestras	3100	oolo			3100	2100	2100	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Caolínica Posible uso del material: Loza, Porcelana, refractarios, aditivos Otros análisis a realizar: Difractometría de Rayos X Observaciones y recomendaciones: Mohs H < 3,5 TABLA Nº 10: OCURRENCIA 10

	Muestreo	Afloramien.	Idem	Idem
ı	Peso Específico	t	1	
	Humedad . %		1	ı
ho	Temperatur a °C	006	1000	1100
Caracterización del Bizcocho	Color de quema	Marron	Idem	Idem
Caracte	% Contrac	1		t
	% Absor- ción	1	()	Ė
;	Indice	1	1	L
;	Líquido		1	ı
:	Limite Plástico			ľ
:	Forosidad	-		
	Crudo	Naranja	Idem	Idem
2.4	Muestras	3101	3101	3101

Humedad de la pasta en el momento de la preparación de la probeta

² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Pirofilita Posible uso del material: Cerámica, aditivo, tallados, sanitarios, otros Otros análisis a realizar: Difractometría de Rayos X Observaciones y recomendaciones: Sin ensayos de Mohs TABLA Nº 11: OCURRENCIA 11

	03.	-0	<u>п</u>				
	Muestreo	Canal 0 -	0,5 m	ldem	Idem		
Peso Específico ²		1,65		1,71	2,09		
	Humedad .	23,48		23,48	23,48		
ho	Temperatur a °C	006		1000	1100		
Caracterización del Bizcocho	Color de quema	Amarillo rojizo	5 Y.K-6/8	Idem	Rojo	Amarillento 5	YR 5/6
Caracte	% % Absor- Contrac			1,35	6,75	114	
	% Absor- ción	17,9 0,65		17,7	7,3		
;	Indice Plástico	4,27		Idem	Idem		
;	Liquido	26,25		Idem	Idem	2	
;	Linute Plástico	21,98		Idem	Idem		
:	Forosidad	29,6		30,4	15,3		
	Color	Gris	Claro 2,5 YR 7/1	Idem	Idem		
	No de Muestras	3102		3102	3102		

 $^{^1\,\}mathrm{Humedad}$ de la pasta en el momento de la preparación de la probeta $^2\,\mathrm{Peso}$ específico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras. Buen coolor cerámico a los 1000° C. Tendencia a sinterización a los 1100° C. Mohs Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos Rojas aditivados

TABLA Nº 12: OCURRENCIA 12

		Muestreo			Afforamina	ALIOI ALIIICII.	Idem	111000	Idem
		Peso Específico ²			;		1		1
I		Humedad ¹ %			į		1		1
of the second	OHA	Temperatur	ء د د		006	1000	1000	1100	0011
Caracterización del Bizcocho	Company to the second	Color de quema		Diame	Dianco	Grie	CITO . C	Ciris oscuro	
Caracte		- Contrac		17000		;		1	
		% Absor-	Clon	1		1		1	
,	Indice	Plástico		!		1	899	-	
2 3 3 h	Limite	Líquido		-			1		
Limito	Connic	Plástico			-		1		
Porosidad			1		1		-		
Color	7	Cruao	Blanco		Idem	-	Idem		
Iv de	10				3103	2102	2103		

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso específico de la probeta cocida

Probable tipo de material según ensayos técnicos: Toba Soldada Observaciones y recomendaciones: Sin ensayo de Mohs Otros análisis a realizar: Difractometría de Rayos Posible uso del material: Barnices aditivados

TABLA N° 13: OCURRENCIA 13

	Muestreo		Perfor 0_	0.101.0	o,s m	Idem			Idem	III
	Peso Específico ²		1.82			1.77			2.03	
	Humedad ¹ %		37,37			Idem			Idem	
ho	Temperatur		900			1000			1100	
Caracterización del Bizcocho	Color de quema		28,89 15,6 2,15 Amarillo rojizo	7.5 VR-7/8	011 377 06.	Idem 14,5 3,20 Amarillo rojizo	5 YR-7/8	011111111111111111111111111111111111111	6,3 7,80 Amarillo rojizo	5 YR-6/5
Caracte	% % Absor- Contrac		2,15			3,20			7,80	- 5
	% Absor-	CLOIA	15,6			14,5				
Į, die	Plástico	000	78,89		;	Idem			Idem	
Limita	Líquido		02,20			Idem		1.1	ıdem	
Límite	Límite Plástico		24,01		113	ıdem		Table	ujani	
Porosidad		07.1	4131		0.20	0,67		100	17,0	
Color			C,2 SIII)	X-5/1	Idam	IIII		Idem	III	
Nº de	Muestras	3104	1010		3104	1010		3104	-	

¹ Humedad de la pasta en el momento de la preparación de la probeia ² Peso especifico de la probeia cocida

Posible uso del material: Ladrillos rojos y/o blancos aditivados Observaciones y recomendaciones: Una fisura. Mohs H > 3,5 Probable tipo de material según ensayos técnicos: Arcilla Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 14: OCURRENCIA 14

Límite fudice Caracterización del Bizcocho	Líquido	22,98 3,67	Idam 11	10cm 10cm 20,1 2,40 A	Idem Idem 10 0 10 1 10 10 10 10 10 10 10 10 10 10	19,0 2,10 N
	% Contrac Color de quema	Rosado 7,5 YR-7/4		2,40 Amarillo rojizo	J IK-//0	Marron pálido
Índice		3,67 1	1.4	Idem 7	Idom 10	Tacill Tippi
Límite	Líquido	22,98	Ldown	ותכווו	Idem	TIPOT I
Límite	Plástico	19,31	Idem		Idem	
Porosidad		31,9	35.9		35.6	
Color	Crudo	Amarillo pálido 5 V-8/2	Idem		Idem	
No de		3105	3105		3105	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Posible uso del material: Cerámica, aditivo, tallados, sanitarios, otros Probable tipo de material según ensayos técnicos: Talco Otros análisis a realizar: Difractometría de Rayos X Observaciones y recomendaciones: Mohs $H \le 3,5$ TABLA N° 15: OCURRENCIA 15

	Muestreo		Afloramien.				dem		בנישני
	Peso Específico 2		1,60			1	1.5/	1 63	(0.)
	Humedad '		25,47			Idone	Idem	Idem	זכרווו
10	Temperatura °C		006			1000	1000	1100	0044
Caracterización del Bizcocho	% % Absor- Contrac Color de quema		9,2/ 21,7 0,05 Blanco 2,5 Y-	8/1		Idem 25.4 0.55 Blanco 5 V-8/1	T/O T CONTE	Idem 23,5 0,90 Blanco 5 Y-8/1	
Caract	% Contrac		0,05	11		0.55	226	06,0	
1	% Absor- ción		21,7			25.4		23,5	
fulle	Plástico	100	77'6			Idem		Idem	
Limite	Líquido	10.00	24,42		* *	Idem		Idem	
Límite	Plástico	15 60	12,00		7.1	Idem	1-4	Idem	
Parasidad			0,40		31.08	40,10	100	20,4	
Color	Crudo	Rlanco	5 YR-	8/1	Ldown	וחבחוו	Ldom	Idein	
Nº sie	Muestras	3106	-		2106	0110	2106	2100	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Caolínica Posible uso del material: Loza, porcelana, refractarios, aditivos Otros análisis a realizar: Difractometría de Rayos X Observaciones y recomendaciones: Mohs H< 3,5 TABLA N° 16: OCURRENCIA 16

	Muestreo	Canal 0 -	1,8 m	Idem	Idem
Ç.,	Específico 2	1,62		1,61	1,71
TY.m.s.do.d	%	20,94		Idem	Idem
ho	Temperatura °C	006		1000	1100
Caracterización del Bizcocho	Color de quema	-0,20 Amarillo rojizo	7,5 YR-7/6	Idem	Idem 18,5 1,60 Amarillo rojizo 5 Y-6/8
Caract	% % Absor- Contrac	-0,20		0,10	1,60
	% Absor- ción	9,59 20,1		Idem 21,7 0,10	18,5
;	Indice	65'6		Idem	Idem
;	Líquido	29,15		Idem	Idem
	Limite Plástico	19,56	¥ .	Idem	Idem
:	I'vi vsidad	32,7			31,9
	Crudo	Матго́п	pálido 10 YR- 6/3	Idem	Idem
~	Muestras	3107			3107

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Observaciones y recomendaciones: Sin fisuras. Mohs $H \le 3,5$ Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 17: OCURRENCIA 17

さらいのできないのできないのできないのできない。

-	Mucstreo	Pozo	Cavado 0	0,7 m	Idem		Idem	
f	Peso Específico 2				1,87		1,90	
	Humedad -	18,79			Idem		Idem	
0	Temperatur a °C	006			1000		1100	
Caracterización del Bizcocho	Color de quema	Amarillo rojizo	6/8-5YR		Idem 15,7 0,10 Amarillo rojizo	N1C-0//	Idem 14,9 -,55 Rojo 5/8 - 2,5	YR
Caracte	% % Absor- Contrac ción	0,75			0,10		-,55	
	% Absor- ción	15,3			15,7		14,9	
:	Indice Plástico	15,40			Idem		Idem	
	Limite Líquido	30,95 15,40 15,3 0,75			Idem		Idem	
	Linilte Plástico	15,55			Idem		Idem	
	Porosidad	29,0			29,4		28,5	
	Crudo	Marrón	5/3-7,5	YR	Idem		Idem	
	N° de Muestras	3247			3247		3247	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Observaciones y recomendaciones: Sin fisura. Mohs H > 3,5 Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos rojos

TABLA N° 18: OCURRENCIA 18

ŕ	-		-	_			_		_	
		Mucsireo		Canal 0	0,8 m		Idem		Idem	TION!
		Peso Específico		1,96			1.92		1 93	7,5
	3	Humedad '		16,75			Idem		Idem	
o.l.o	0110	1 emperatura °C		006			1000		1100	
Caracterización del Bizcocho	CALLER LOS UCA DIECOL	Color de quema		9,47 12,3 -0,20 Rojo claro 2,5	YR-6/8		Idem 14,0 -0,15 Amarillo rojizo	5 YR-6/8	Idem 13,8 0,15 Rojo 2,5 YR-	5/8
Caract		% Contrac		-0,20			-0,15		0,15	
		% Absor- ción	007	12,3			14,0		13,8	
	fudice	Plástico	17.0	7,47			Idem		Idem	
	Limite	Líquida	21 10	24,15			Idem		Idem	
	Limite	Plástico	1160	14,00			Idem		Idem	
	Porosidad		010	7,47			26,9		26,8	
,	Color	Crudo	Marrón	10 YR-	5/3		Idem		Idem	
	No de	Muestras	3248	0770		0.00	3248		3248	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso específico de la probeta cocida

Observaciones y recomendaciones: Sin fisura. Buen color cerámico a los 1000° y 1100° C. Mohs H ≥ 3,5. Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos rojos

TABLA N° 19: OCURRENCIA 19

	Mucstreo	Canal 0 - 1 m	Idem	Idem
Paco	Específico 2	1,94	1,96	1,98
1 Populary 1	74 Ullicoan %	20,38	Idem	Idem
ηυ	Temperatura °C	006	1000	1100
Caracterización del Rizencho	Color de quema	Rojo 2,5 YR.5/8	Idem	Rojo 2,5 YR- 4/8
Caract	% Contrac	0,35	1,15	
	% Absor- (ción		13.4 1,15	12,9
1	Indice Plástico	16,49	Idem	Idem
	Límite Líquido	35,85	Idem	Idem
	Límite Plástico	19,36	Idem	Idem
	Porosidad	23,1		25,7
	Color	Marrón 7,5 YR-	J/4 Idem	Idem
	N° de Muestras	3249	27.40	3249

¹ Humedad de la pasta en el momento de la preparación de la probeía ² Peso especifico de la probeía cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica

Posible uso del material: Ladrillos Rojos

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Sin fisura. Buen color cerámico a los 900°, 1000° y 1100° C. Mohs H ≥ 3,5

TABLA N° 20: OCURRENCIA 20

			· I	
	Muestreo	Canal 0 – 0,5 m	Idem	Idem
Days	Específico 2	1,69	1,61	1,63
Truncadod 1	, Mullicuau %	22,91	Idem	Idem
ıυ	Temperatura °C	0006	1000	1100
Caracterbación del Bizcocho	Color de quema	Amarillo rojizo 5 YR-7/8	Amarillo rojizo 7,5 YR-7/6	Idem 21,2 -0,10 Amarillo rojizo 7,5 YR-7/6
Caract	% % Absor- Contrac ción	16,08 19,8 -0,25	21,2 -0,70	-0,10
	% Absor- ción	19,8	21,2	21,2
;	Indice Plástico	16,08	Idem	Idem
	Limite Líquido	30,00	Idem	Idem
	Límite Plástico	13,92	Idem	Idem
	Porosidad	33,5	34,4	34,7
	Color	Матоп pálido 10 YR 6/3	Idem	Idem
	N° de Muestras	3250	3250	3250

 $^1\,\mathrm{Humedad}$ de la pasta en el momento de la preparación de la probeta $^2\,\mathrm{Peso}$ especifico de la probeta cocida

Observaciones y recomendaciones: Sin fisura. A los 1000° y 1100° C debe aditivarase para ladrillos blancos. Mohs H < 3,5 Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillo blanco aditivado

TABLA Nº 21: OCURRENCIA 21

	Muestreo	Canal 0 -1 m		Idem			Idem	
	и		11-11-					-
	reso Específico	1,95		1,59			1,97	
4	riumedad %	18,05		Idem			Idem	
ot	Temperatur a °C	006	fs:	1000		200	1100	
Caracterización del Bizcocho	Color de quema	10,61 12,0 -0,35 Rojo 2,5 YR-	2/8	Rojo	amarillento 5	YR-5/8	Idem 12,8 -0,20 Rojo 2,5 YR-	2/8
Caracte	% % Absor- Contrac	-0,35		-1,05			-0,20	
	% Absor- ción	12,0		Idem 14,0 -1,05			12,8	
	Indice Plástico	10,61		Idem			Idem	
:	Liquido	26,00		Idem			Idem	
	Limite Plástico	15,39	k:	Idem			Idem	
	Porosidad	23,5		22,3			25,3	
:	Color	Marrón	7,5 YR- 5/3	Idem			Idem	
	N° de Muestras	3251		3251			3251	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica

Posible uso del material: Ladrillos rojos

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Sin fisura. Buen color cerámico a los 900°, 1000° y 1100° C. Tendencia a la sinterización a los

1100° C. Mohs H≥3,5

TABLA N° 22: OCURRENCIA 22

Caracterización del Bizencho	Color de quema Temperatura % Específico 2 Muestreo	Amarillo rojizo 900 26,54 1,64 Calicata 0 — 5 YR-7/8 0,8 m	Idem 1000 Idem 1,64 Idem	Amarillo rojizo 1100 Idem 1,69 Idem 5 YR-6/8 AR-6/8 Idem Idem
Caracteriza	% Contrac Co	0,30 Am	1,15	
	% Absor- ción	19,2	20.4	19,4
	Indice Plástico	11,55	Idem	Idem
	Límite Líquido	35,95	Idem	Idem
	Línuite Plástico	24,40	Idem	Idem
	Porosidad	31,6	33.6	32,8
	Color	Marrón pálido 10 YR-	Idem	Idem
	N° de Muestras	3252	2757	3252

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Observaciones y recomendaciones: Sin fisura. Buen Color Cerámico a los 1000° y 1100° C. Mohs H≤3,5 Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos rojos aditivados

TABLA N° 23: OCURRENCIA 23

Porosidad	Limite Plástico 17,01	Liquido Líquido 29,35	Índlue Plástico 12,34	% Absorction 12,9	% % Absor- Contrac ción 12,9 -0,55	Co Ro	Temperatura °C 900	Humedud ¹ % 18,39	Pouo Específico ? 1,91	Mucstreo Canal 0 -
	,				L C	YR-6/8	000	Talent	1 00	0,8 m
_	Idem	Idem	Idem	14,2	-0,15	Idem 14,2 -0,15 Amarillo rojtzo 5 YR-6/8	1000	ıdem	1,92	Idelli
27,4	Idem	Idem	Idem	14,2	Idem 14,2 0,20	Rojo 2,5 YR- 5/8	1100	Idem	1,92	Idem

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Posible uso del material: Ladrillos rojos

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Sin fisura. Buen color cerámico a los 1000° y 1100° C. Mohs H≥ 3,5

TABLA N° 24: OCURRENCIA 24

and the second of the second o

			Т	Т	
	Muestreo	Canal 0 – 0,5 m	Idem	TOTAL	Idem
Peen	Específico 2	- 1,98	1 05	1,73	1,98
Homodod 1	%	15,28	Ldown	IUCIII	Idem
010	Temperatura °C	006	0001	Inno	1100
Caracterización del Bizcocho	Color de quema	Amarillo rojizo 5 YR-6/8		Idem	Idem 12,6 -0,10 Rojo 2,5 YR-
Caract	% % Absor- Contrac	10,0 0,35	3,4	12,7 0,60	-0,10
	% Absor-	10,0	1	12,7	12,6
	Plástico	9,74		Idem	Idem
	Límite Líquido	22,98		Idem	Idem
	Límite Plástico	13,24		Idem	Idem
	Porosidad	16,8		20.5	25,1
	Color	Marrón gris claro 2,5 Y-	5/2	Idem	Idem
	N° de Muestras	3254		2254	3254

 $^{^1\,\}mathrm{Humedad}$ de la pasta en el momento de la preparación de la probeta 2 Peso específico de la probeta cocida

Observaciones y recomendaciones: Sin fisura. Buen color cerámico a los 900°, 1000° y 1100° C. A los 1000° y 1100° C presenta Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos rojos aditivados

eflorescencias salinas. Mohs $H \ge 3,5$.

TABLA N° 25: OCURRENCIA 25

	Muestreo	Perforación	0 – 2 m		Idem	Idem
4	reso Específico ²	1,79			1,80	1,97
1	Humedad -	31,82			Idem	Idem
ho	Temperatura °C	006			1000	1100
Caracterización del Bizcocho	Color de quema	13,61 17,9 0,45 Rojo 2,5 YR-	8/8		Idem	Idem
Caract	% % Absor- Contrac ción	0,45			1,15	4,35
	% Absor- ción	17,9			19,3 1,15	Idem 14,5 4,35
;	Indice Plástico	13,61			Idem	Idem
	Limite Líquido	42,60			Idem	Idem
;	Limite Plástico	28,99			Idem	Idem
	Forosidad	31,9	9		34,9	28,8
	Crudo	Rojo	oscuro 2,5 YR-	3/6	Idem	Idem
	N° de Muestras	3256			3256	3256

 1 Humedad de la pasta en el momento de la preparación de la probeta 2 Peso específico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla laterítica Observaciones y recomendaciones: Sin fisura. Mohs $H \ge 3,5$ Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos rojos aditivados

TABLA Nº 26: OCURRENCIA 26

K							Caract	Caracterización del Bizcocho	ho	11. 1.1	D	
No de Muestras	Culor Crudo	Porosidad	Límite Plástico	Limite Líquido	Tudire Plástico	% Absor- ción	% Contrac	Color de quema	Temperatura °C	Mumerau %	Específico ²	Muestreo
3257	Rojo 10	32,6	26,86	39,85	12,99	18,1	0,40	18,1 0,40 Rojo 2,5 YR- 5/8	006	27,48	1,79	Perforación 2 – 2,65 m
	0/1-7							7 1	0000	1.1	1 70	Lilone
3257	Idem	35,8	Idem	Idem	- Idem	20,0	1,45	Idem	1000	ngem	1,78	Idelli
3257	Idem	30,0	Idem	Idem	Idem	15,3 4,10	4,10	Idem	1100	Idem	1,95	Idem

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Laterítica

Posible uso del material: Ladrillos rojos aditivados

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Sin fisura a los 900°, 1000° y 1100° C. Excelente color cerámico, pero se debe aditivar. Efforescencias salinas a los 900°C. Mohs $H \ge 3,5$

TABLA Nº 27: OCURRENCIA 27

			_			,	_
	Muestroo	Perforación 5,40 – 6,0 m		Idem		Idem	
	Peso Específico ²	1,54		1,55		1,57	
	Hunedad '	30,08		Idem		Idem	
sho	Tenperatura °C	006		1000		1100	
Caracterización del Bizcocho	Color de quema	7,52 25,6 -0,75 Amarillo rojizo 5 YR-7/6		Idem 2/,6 -0,70 Rojo claro 2,5	200	Idem 2/,0 0,10 Rosado 5 YR -	8/3
Caraci	% % Absor- Contrac	-0,75		0/.0-	1	0,10	
	% Absor- ción	25,6	, ,	21,6	0 10	7,0	
, i	Plástico	7,52	1	Idem		Idem	
I (mite	Líquido	38,99	1.1	Idem	11	Idem	
Limite	Plástico	31,47	17	Aucm	Talen	Idem	
Porosidad		39,4	Ŀ	42,7	704	47,0	
Color	Crudo	Amarillo rojizo 5 YR-6/8	Idom	ותכווו	Idam	Incili	
N° de	Muestras	3258	3268	2576	2750	0676	

l Humedad de la pasta en el momento de la preparación de la probeta Peso especifico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras. Se blanquea a los 1100° C. Mohs $H \le 3,5$ Probable tipo de material según ensayos técnicos: Arcilla Caolínica Posible uso del material: Loza, porcelana, refractario, aditivos Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 28: OCURRENCIA 28

ではいっているからのからできなっているのでものできないという。

	Muestreo	Pozo cavado 6 – 7 m	Idem	Idem
	Peso Específico 2	1,63	Idem	Idem
	Hunicdad *	25,52	Idem	Idem
ho	Temperatura °C	Õ06	1000	1100
Caracterización del Bizcocho	Color de quema	Rosado 5 YR.8/3	Idem	Blanco 5 YR- 8/1
Caract	% % Absor- Contrac ción	0,75		Idem 24,1 -0,75
	% Absor- ción	7,93 21,4 0,75	Idem 24,3 0,75	24,1
;	Indice Plástico	7,93	Idem	Idem
7. 3.4	Liquido	29,95	Idem	Idem
	Limite Plástico	22,02	Idem	Idem
	Lorosidad	35,0	39,7	39,6
	Crudo	Rosado 7,5 YR- 8/4	Idem	Idem
0.10	Muestras	3259	3259	3259

¹ Humedad de la pasta en el momento de la preparación de la probela ² Peso especifico de la probela cocida

Probable tipo de material según ensayos técnicos: Arcilla Caolínica Posible uso del material: Loza, porcelana, refractarios, aditivos Observaciones y recomendaciones: Sin fisuras. Mohs H < 3,5 Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 29: OCURRENCIA 29

						Caraci	Caracterización del Bizcocho	ho	•		
Crudo	Porosidad	Límite Plástico	Límite Líquido	Indice Plástico	% Absor- ctón	% % Absor- Contrac	Color de quema	Temperatura °C	Hunedad ¹ 1	Peso Específico ²	Muestreo
Blanco 8/1-	28,0		•		15,1-	0,20	15,1- 0,20 Blanco 8/1-5Y	006	18,37	1,84	Afloramiento
4 8	24,3	1		1	13,0	-0,50	Idem	1000	Idem	1,86	Idem
Idem	24,0			1	12,9	12,9 -1,00	Idem	1100	Idem	1,86	Idem

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso específico de la probeta cocida

Observaciones y recomendaciones: Fisurado. Difícil de moldear. Mohs H < 3,5 Posible uso del material: Cerámica, aditivo, tallados, sanitarios, otros Probable tipo de material según ensayos técnicos: Pirofilita Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 30: OCURRENCIA 30

_				
	Muestreo	Pozo cavado 0 – 0,5 m	Idem	Idem
	Peso Específico ²	1,75	1,74	1,79
	Humedad '	27,20	Idem	Idem
ho	Temperatura °C	006	1000	1100
Caracterización del Bizcocho	Color de quema	0,60 Amarillo rojizo 6/8-5YR	Idem	Idem
Caract	% % Absor- Contrac	09'0	0,15	-0,15
	% Absor- ción	15,1	19,9 0,15	16,9
	nance Plástico	1	1	j
, , , , , , , , , , , , , , , , , , ,	Líquido	1	I	1
7.	Plástico	I	i	
, T	r or osidau	34,3	34,6	30,4
	Crudo	Матrón 7/3- 10YR	Idem	Idem
N.O. J.	Muestras	3381	3381	3381

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica

Posible uso del material: Ladrillos rojos aditivados

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Sin fisuras. Buen color cerámico a los 1000° y 1100° C. Mohs H \le 3,5

TABLA Nº 31: OCURRENCIA 31

							Diagonal Com Act Diagona	100			
				1		Caract	Caracterizacion dei Bizcociio	OII	Humanday 1	Dates	
Color	Porosidad	Límite Plástico	Límite Líquido	Indice Plástico	% Absor- ción	% % Absor- Contrac	Color de quema	Temperatura °C	% %	Específico 2	Muestreo
Gris claro 7/2- 10YR	26,7	12,08	16,50	4,42	4,42 14,4	1,10	Rosado 8/4- 7,5YR	006	17,39 -	1,84	Canal 0 – I m
Idem	26,6	Idem	Idem	Idem	14,4	Idem 14,4 0,15	Amarillo rojizo 8/6-7,5YR	1000	Idem	1,84	Idem
Idem	23,7	Idem	Idem	Idem	12,4	-0,55	Idem 12,4 -0,55 Amarillo 7/6-	1100	Idem	1,90	Idem

 $^{\rm l}$ Humedad de la pasta en el momento de la preparación de la probeta $^{\rm 2}$ Peso específico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras. A los 1000° y 1100° C para ladrillos blancos aditivados. Mohs H ≥ 3,5 Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 32: OCURRENCIA 32

STATE OF THE STATE

		1				
	Muestreo	Canal 0 –	0,8 m	Idem	Idem	
	Peso Específico ²	1,63		1.63	1,68	
	Humedad '	23,76		Idem	Idem	
cho	Temperatura °C	900		1000	110	
Caracterización del Bizcocho	Color de quema	0,90 Amarillo rojizo	7/6-7,5YR	Idem	-9/	10YR
Caract	% % Absor- Contrac ción	06'0		0,05	19,9 -0,30	
	% Absor- ción	21,7		21,2	19,9	
	Indice Plástico	8,64		Idem	Idem	
1 (5.0%)	Líquido	23,90		Idem	Idem	
T franks	Plástico	15,26		Idem	Idem	7
Downeidad	T OY OSYGUE	35,6	9	1 1	33,6	
Color	Crudo	Amarillo	pálido 7/2- 2,5YR	Idem	Idem	
No As	Muestras	3385		3385		

 $^1\,\mathrm{Humedad}$ de la pasta en el momento de la preparación de la probeta $^2\,\mathrm{Peso}$ especifico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras. Se debe estudiar refractariedad. Mohs $H \ge 3,5$ Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 33: OCURRENCIA 33

		-					
	Muestreo	Canal 0 -	l m		Idem	Idem	
	Peso Específico ²	1,65			1,65	1,78	
3	Humedad *	21,28			Idem	Idem	
ho	Temperatura °C	900			1000	1100	
Caracterización del Bizcocho	Color de quema	5,66 18,4 1,20 Amarillo rojizo	7/6-7,5YR		Idem	Idem 16,2 -1,20 Rojo amarillo	5/6-5YR
Caract	% % Absor- Contrac	1,20			0,10	-1,20	
	% Absor- ción	18,4			Idem 18,8 0,10	16,2	
;	Indice Plástico	99'5			Idem	Idem	
	Liquido Líquido	21,80	1		Idem	Idem	
:	Linute Plástico	16,14			Idem	Idem	<
:	Forosidad	30,5			31,2	29,1	
· ·	Crudo	Marrón	5/3-	7,5YR	Idem	Idem	
	Muestras	3405			3405	3405	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Observaciones y recomendaciones: 1 fisura. Mohs $H \ge 3,5$ Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 34: OCURRENCIA 34

The state of the s

	Muestreo	Pozo cavado	0 – 1 m	Idem	Idem
	Peso Específico ²	1,53		1,53	1,59
	Humedad '	24,31		Idem	Idem
lıo	Temperatura °C	900		1000	1100
Caracterización del Bizcocho	Color de quema	Marrón pálido	8/3-10YR	Amarillo pálido 8/3-2,5Y	Idem 21,6 -1,35 Marrón pálido 8/4-10YR
Caract	% % Absor- Contrac	13,43 23,9 -0,25		0	-1,35
	% Absor- ción	23,9		23,9	21,6
f. 3:	Plástico	13,43		Idem 23,9	Idem
7, ,,,,,	Líquido	31,80		Idem	Idem
I fresh	Plástico	18,37		Idem	Idem
Dorocidad	T OI OSIGAGI	36,7	5	36,7	34,5
Color	Crudo	Marrón	grisaceo 5/2- 10YR	Idem	Idem
No de	Muestras	3407		3407	3407

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta eocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica o arcilla caolínica Posible uso del material: Ladrillos blancos aditivados

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Fisurado. Se debe investigar refractariedad. Mohs H < 3,5

TABLA Nº 35: OCURRENCIA 35

Γ					Т	Т
	Muestreo	Canal	0,51 m		Idem	Idem
	Peso Específico ²	1,82			1 84	2,01
	Humedad '	32,02			Idem	Idem
ho	Tenperatura °C	006			1000	
Caracterización del Bizcocho	Color de quema	37,09 19,2 -1,25 Rojo 5/8-2,5YR	×	,	Idem	13,7 -4,70 Rojo 5/6-2,5YR
Caraci	% % % Absor- Contrac clón	-1,25			-1,80	-4,70
	% Absor- clón	19,2			18,9 -1,80	13,7
1.1.2	Plástico	37,09			Idem	Idem
T (seeing)	Líquido	29,80			Idem	
I ímite	Plástico	22,71			Idem	Idem
Porosidad		35,1			34,8	27,9
Color	Crudo	Матгоп	rojizo 4/4-	5YR	Idem	Idem
No de	Muestras	3408			3408	3408

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla laterítica

Otros análisis a realizar: Difractometría de Rayos X Posible uso del material: Ladrillos rojos aditivados

Observaciones y recomendaciones: Fisurado. A los 900°,1000° y 1100° C excelente color cerámico. Mohs H > 3,5

TABLA Nº 36: OCURRENCIA 36

N° de Color Muestras Crudo	r Porosidad					Caract	Caracterización del Bizcocho	ho	111	Dece	
		 Límite Plástico	Límite Líquido	Índice Plástico	% Absor-	% % Absor- Contrac	Color de quema	Temperatura °C	интинеска %	Específico 2	
					CIOI	-		000	10.06	1 61	Canal 0 -
3409 Marr	9,25 no	15,12	24,98	98'6	9,86 21,7 1,05		Amarillo Roj.	2006	19,00	†°°1	0.5 m
5/4-							//o-/,				
7 5 7	2										7.4
1	1	Lam	Idem	Idem	21.4	Idem 21.4 -0.60	Idem	1000	Idem	1,63	Idem
П	n,cc m	TICILI	TOTAL	1			1	1100	Idem	1 63	Idem
2400 Ider	36.1	Idem	Idem	Idem	Idem 22,1	-1,15		1100	IUCIII	1,00	
		X					6/8-7,5YR				

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Observaciones y recomendaciones: No fisurado. Mohs H < 3,5 Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 37: OCURRENCIA 37

No da	Color	Poronidad	Timile	Thomas	,		Caraci	Caracterización del Bizcocho	out			
Muestras	Crudo		Plástico	Líquido	Plástico	% Absor- ción	% Contrac	Color de quema	Temperatura °C	Humedad ' %	Peso Específico ²	Muestreo
3418	Rosado	36,2	17,95	26,98	9,03	21,4	0,15	Ros	006	21,32	1,69	1,69 Canal 0,50 -
	11/4- 5YR		N.					5YR				1 m
3418	Idem	34,8	Idem	Idem	Idem	20,1	20,1 -0,60	Idem	1000	Idem	1 73	Tolor
3418	Idem	35,3	Idem	Idem	Idem	Idem 20,4 -0,20	-0,20	Idem	1100	Idem	1,72	Idem

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso específico de la probeta cocida

Observaciones y recomendaciones: No fisurado. Alos 1100° C se blanquea. Mohs H < 3,5 Probable tipo de material según ensayos técnicos: Arcilla Caolínica Posible uso del material: Loza, porcelana, refractarios, aditivos Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 38: OCURRENCIA 38

_				-
	Muestreo	Canal 0 - l m	Idem	Idem
Dogs	Específico 2	1,75	1,75	1,82
1 Lemonday 1	11umcuau %	18,79	Idem	Idem
lıo	Temperatura °C	006	1000	1100
Caracterización del Bizcuclio	Color de quema	Amarillo 7/6- 10YR	Marrón rojizo 7/6-5YR	Marrón 5/6- 7YR
Caract	% % Absor- Contrac	17,8 3,25	17,9 1,00	15,6 2,40
	% Absor- ción	17,8	17,9	15,6
	Indice Plástico	1	1	I
	Línite Líquido	I	-	6
	Límite Plástico	I	1	1
	Porosidad	31,3	31,3	28,5
Sealth.	Color	Marrón pálido 6/3-	Idem	Idem
	N° de Muestras	3442	3442	3442

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Observaciones y recomendaciones: Sin fisuras. A los 1000° C para ladrillos blancos aditivados. Mohs $H \ge 3,5$ Probable tipo de material según ensayos técnicos: Arcilla Puzolánica Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA N° 39: OCURRENCIA 39

	-	-	_	_			_				
		Muestreo		Canal 0,3 –	0,6 m			Idem			Idem
	Peso	Específico 2	15.0	13,3				1,56			1,58
	Hunnedad 1	%	30.17	70,17				Idem		Y 1	Idem
ho		Temperatura	006			1		1000		1100	0011
Caracterización del Bizcocho		Color de quenia	Amarillo rojizo	mx3 3/2	A10-0//			Rosado 8/4-	SYR	ď	7.5YR
Caract	%	Absor- Concent	8,97 28,5 -0.95					28,2 -1,20		Idem 27 5 -1 05	7,77
	% Absor- ción		28,5					28,2		275	5,1
1	Plástias	1 143 (100	8,97					Idem		Idem	
Tfmite	Líonido	oninker	34,60				1	Idem		Idem	
Limite	Plástico		25,63				11.	Idem		Idem	
Porosidad			43,7				144.1	44,1		43,6	
Color	Crudo		Rojo	pálido	-9/1	10YR	Idom	III		Idem	
N° de	Muestras		3444				3141	+++		3444	

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Caolínica Posible uso del material: Loza, porcelana, refractarios, aditivos

Observaciones y recomendaciones: Sin fisura. Alos 1100° C se blanquea. Mohs H < 3,5 Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 40: OCURRENCIA 40

	00	<u> </u>	-	_	
	Mucstreo	Canal 0-	0,8 m	Idem	Idem
5	Peso Específico ²	1,64		1,65	1,75
3	Humedad - %	22,19		Idem	Idem
ho	Temperatura °C	006		1000	1100
Caracterización del Bizcocho	Color de quema	Amarillo pálido	8/3-2,5YR	Idem 19,1 -0,40 Amarillo pálido 8/4-2,5YR	Amarillo 8/6- 10YR
Caracte	% Contrac			-0,40	Idem 1,61 -1,25
	% Absor- ción	19,6		19,1	1,61
;	Indice Plástico	13,97 19,6 0		Idem	Idem
	Limite Líquido	28,50		Idem	Idem
	Limite Plástico	14,53		Idem	Idem
	Porosidad	32,2		31,7	28,3
	Crudo	Gris	6/1- 10YR	Idem	Idem
	N° de Muestras	3446		3446	3446

 $^{^1\,\}mathrm{Humedad}$ de la pasta en el momento de la preparación de la probeta 2 Peso específico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica - Arcilla Caolínica? Observaciones y recomendaciones: Sin fisuras. Investigar refractariedad. Mohs H \geq 3,5 Posible uso del material: Ladrillos blancos aditivados Otros análisis a realizar: Difractometría de Rayos X

TABLA Nº 41: OCURRENCIA 41

	Muestreo	Canal 0 -	l m		Idem	Idem	
	Peno Específico 2	1,49		1.40	1,49	1,53	
	Humedad ¹ %	22,19		Idem	IIIoni	Idem	
ho	Temperatura °C	006		1000	0001	1100	
Caracterización del Bizcocho	Color de quema	24,7 -0,70 Amarillo pálido	VI 1 C'7-710	-0.80 Amarillo nálido	8/3-2,5YR	22,9 -2,00 Marrón pálido	8/4-10YR
Caract	% 9%Absor- Contracción	-0,70		-0.80		-2,00	
	% Absor- ción	24,7		24.2	`	22,9	
Índia	Plástico	-	300	1		l	
Limite	Liquido	l		ı		I	
Límite	Plastico	ı	4	1		1	
Porosidad		36,9		36,2		35,3	
Color	Cı udo	Gris 6/1-	10YR	Idem		Idem	
N° de	Muestras	6455		3455		3455	

l Humedad de la pasta en el monsento de la preparación de la probeta Peso específico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla Puzolánica - Arcilla Colínica?

Posible uso del material: Ladrillos blancos aditivados

Otros análisis a realizar: Difractometría de Rayos X

Observaciones y recomendaciones: Sin fisuras. Difícil de moldear. Investigar refratariedad. Mohs H \leq 3,5

TABLA Nº 42: OCURRENCIA 42

	_	reo	0	1			8	8	-		
		Mucstreo	Canal 0 =	•		;	Idem	Idem			
	אייאן	Específico 2	1,85			,	1,86	1 80	1,00		
	TT	%	15,34	Ŧ			Idem	Idem	TOTAL		
l,o	011	Temperatura °C	006				1000	1100	7100		
Caracterización del Rizcocho	בן ולשכוטון מכן שולאסכ	Color de quema	Amarillo rojizo	A10./1-0//			Idem	Daio aloro 6/8	Idem 15,7 0,05 Nojo cialo 0/0-	2,5YR	
Compat	Caraci	% Contrac	0,25				14.5 -0,40	370	20,0		
		% Absor-	13,88 14,9				14,5	127	15,7		
	:	Indice Plástico	13,88				Idem	7.1	Idem		
	•	Límite Líquido	32,80				Idem		Idem		
		Límite Plástico	18,92				Tďem		Idem		
		Porosidad	27,6		7		27.1	16/7	25.9		
		Color	Gris	claro	7/1-	2.5YR	Idom	TOTAL	Idem		
		N° de Muestras	3544				2544	2344	3544		

¹ Humedad de la pasta en el momento de la preparación de la probeta ² Peso especifico de la probeta cocida

Probable tipo de material según ensayos técnicos: Arcilla

Posible uso del material: Aditivo

Otros análisis a realizar: Difractometrá de Rayos X

Observaciones y recomendaciones: Muy fisurado. Probetas muy duras en las tres temperaturasDebe investigarse la alta dureza.

Mohs H > 3,5

TABLA Nº 43: OCURRENCIA 43

MATERIALES ARCILLOSOS DEL PRECAMBRICO SUR – PARAGUAY NUMEROS DE OCURRENCIAS

Números	Código	Código de	Tipo de Material
de Ocurrencia	de Campo	Laboratorio	
1	A 1 - 97	3091	Arcilla Puzolánica
2	A 2 - 97	3092	Arcilla Puzolánica
3	A 3 - 97	3093	Arcilla Puzolánica
4	A4-97	3094	Arcilla Puzolánica
5	A 5 - 97	3095	Arcilla Puzolánica
6	A 6 - 97	3096	Arcilla Puzolánica
7	A7-97	3097	Arcilla Puzolánica
8	A 8 - 97	3098	Arcilla Puzolánica
9	A 9 - 97	3099	Arcilla Puzolánica
10	A 10 - 97	3100	Arcilla Caolínica
11	A 11 - 97	3101	Pirofilita
12	A 12 - 97	3102	Arcilla Puzolánica
13	A 13 - 97	3103	Toba Soldada
14	A 14 - 97	3104	Arcilla
15 '	A 15 - 97	3105	Talco
16	A 16 - 97	3106	Arcilla Caolínica
17	A 17 - 97	3107	Arcilla Puzolánica
18	A 18 - 97	3247	Arcilla Puzolánica
19	A 19 - 97	3248	Arcilla Puzolánica
20	A 20 - 97	3249	Arcilla Puzolánica
21	A 21 - 97	3250	Arcilla Puzolánica
22	A 22 - 97	3251	Arcilla Puzolánica
23	A 23 - 97	3252	Arcilla Puzolánica
24	A 24 - 97	3253	Arcilla Puzolánica
25	A 25 - 97	3254	Arcilla Puzolánica
26	A 27 - 97	3256	Arcilla Laterítica
27	A 28 - 97	3257	Arcilla Laterítica
28	A 29 - 97	3258	Arcilla Caolínica
29	A 30 - 97	3259	Arcilla Caolínica
30	A 33 - 98	3372	Pirofilita
31	A 42 - 98	3381	Arcilla Puzolánica
32	A 44 - 98	3383	Arcilla Puzolánica
33	A 46 - 98	3385	Arcilla Puzolánica
34	A 51 - 98	3405	Arcilla Puzolánica
35	A 53 - 98	3407	Arcilla Puzolánica
36	A 54 - 98	3408	Arcilla Laterítica
37	A 55 - 98	3409	Arcilla Puzolánica
38	A 64 - 98		
39	A 66 - 98	3418	Arcilla Caolínica
40	A 68 - 98	3442	Arcilla Puzolánica
41	A 70 - 98	3444	Arcilla Caolínica
42	A 79 - 98	3446 3455	Arcilla Puzolánica Arcilla Puzolánica
43	A 90 - 99	3544	Arcilla Arcilla

MATERIALES ARCILLOSOS – PRECAMBRICO SUR PARAGUAYO Análisis Químicos y Tecnológicos

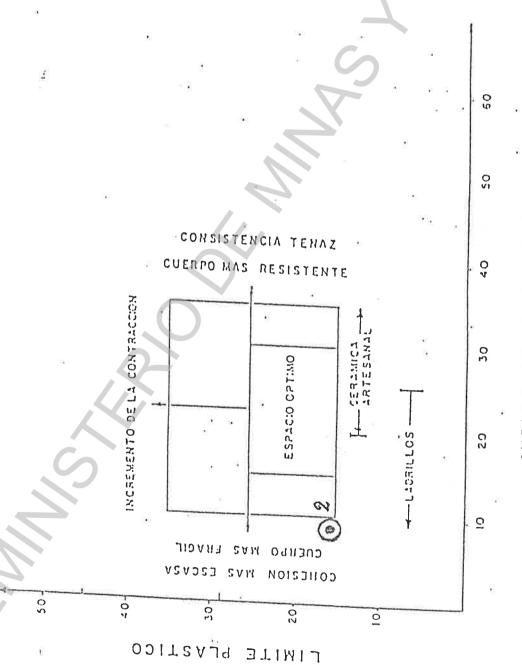
P/C	7.80	3.60	3.30	06.90	7.80	4.60	5.30	6.20	6.50	11.3	9.10	4.20	1.40	7.80	5.00	7.27	4.17	4.80	4.89
H_2O	7.20	1.90	1.10	2.80	3.70	2.10	2.00	2.60	2.20	0.20	0.30	1.90	0.20	5.10	0.48	0.63	5.27	3.65	3.47
K20	0.55	0.46	0.48	1.17	0.53	0.61	0.19	1.15	1.67	0.11	0.05	1.43	3.84	0.39	<0.1	2.98	0.77	0.73	0.70
Na ₂ O	0.38	0.56	0.44	1.23	0.56	0.76	0.19	1.04	1.12	0.23	0.33	1.68	61.0	0.72	0.02	0.24	0.54	1.14	1.30
MgO	0.73	0.16	0.10	0.53	0.37	0.25	0.11	0.43	0.35	0.04	0.02	0.46	0.85	0.42	31.8	0.98	0.21	0.37	0.53
CaO	0.59	949	ar.	0.92	0.21	0.22	ŧ	0.57	0.53	1		0.99	1.39	0.64	E	7.		0.61	99.0
MinO	0.16	0.04	0.04	0.07	0.03	0.04	0.02	0.04	0.05	<0.01	<0.01	0.04	0.04	0.03	0.03	<0.01	0.15	<0.01	0.04
Fe ₂ O ₃	0.43	1.93	1.48	2.83	3.87	1.75	2.22	2.55	2.33	1.11	1.30	2.19	1.73	3.42	3.99	29.0	1.87	2.73	3.04
Al ₂ O ₃	13.9	7.0	5.9	13.9	11.4	7.6	7.8	12.8	6.6	27.4	10.1	9.4	11.0	11.0	0.7	20.2	8.0	10.1	10.0
TiO2	ar:	Ţ	ı	1	2			*	-		-	t	1	1	ı	ı	ı		» .
SiO ₂	63.1	84.0	85.5	69.3	68.3	81.5	83.3	72.5	70.2	57.9	6.99	73.8	74.4	67.4	63.1	62.0	80.4	75.7	78.1
Color molido	Gris Negrusco	Marron Claro	Marron Claro	Marron GrisáceoClaro	Marron Claro	Marron GrisáceoClaro	Gris Claro	Marron Claro	Gris claro Blanquesino	ВІапсо	Naranja	Gris	Blanco	· Gris Claro	Blanco	Blanco	Marron Claro	Marron Grisáceo Claro	Marron amarillen Claro
Tipo de material	Arcilla	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Caolinitica	Pirofil. (Yere)	Arcilla Puzolanica	Toba Soldada	Arcilla	Talco	Arcilla Caolinica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica
Cod. de	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104	3105	3106	3107	3247	3248
Código do Camao	A1/97	A2/97	A3/97	A4/97	A5/97	A6/97	A7/97	A8/97	A9/97	A10/97	A11/97	A12/97	A13/97	A14/97	A15/97	A16/97	A17/97	A18/97	A19/97

	-
Contract of the Contract of th	\Rightarrow
	_
ark	-
144	-
iont.	
cuti	7
. 3	-
123	-
2st	Ė
No.	
834	
THE .	- 40
ANI.	-
8 -	-
No.	-
a.	_
eud.	4
in the	
	7
Made A	7
ساعت	5
kut.	5
dil.	
The same	- 60
	\supset
ÈЯ.	-
EM.	
II.	-
21	-
581	
M.	
	-
	7500
33.	-
Z.	5
H.	
94.	
rig	7
garsia.	7
	1
int.	_
J.	5
	-
回,阿	-
	-
	I
	and a
10.12	-

		1					-														
P/C	5.30	3.90	5.30	5.68	4.80	4.55	7.37	7.83	7.45	10.2											
H ₂ O	8.94	2.08	3.86	3.71	5.61	3.22	2.76	2.92	1.31	0.72											7
K;0	0.52	0.34	0.39	0.51	0.47	0.19	0.40	0.42	0.59	0.75	0.13	3.37	2.16	1.75	1.71	1.18	0.31	0.32	0.17	1.41	0.10
Na ₂ O	1.27	0.42	0.36	0.49	1.18	0.53	90.0	0.04	0.05	0.01	0.26	1.78	0.67	0.47	1.46	0.45	0.16	0.25	0.21	0.54	0.12
MgO	1.25	0.26	0.56	0.53	0.76	0.41	0.44	0.44	0.57	0.28	0.01	0.25	0.11	0.17	0.22	0.11	0.23	80.0	0.05	0.18	0.07
CaO	69.0	0.32	0.20	0.31	0.34	0.29	0.10	0.10	0.08	0.06	0.07	0.32	0.22	0.19	0.99	0.21	0.26	0.18	80.0	0.33	<0.1
MnO	0.09	0.03	0.10	0.05	0.03	0.02	0.02	0.02	<00.1	90.0		<0.02								90.0	0.02
Fe ₂ O ₃	5.16	2.21	4.17	3.67	3.68	2.97	6.26	6.77	3.19	2.11	09.0	4.17	1.53	1.77	1.57	1.27	6.75	1.84	2.11	1.79	7.55
Al_2O_3	7.1	4.0	6.4	5.3	6.5	4.8	15.7	10.4	11.2	17.0	21.96	15.01	6.87	6.25	18.3	15.2	32.4	9.5	33.8	6.57	26.41
TiO ₂	ı	i.	ř.	ï	,	i		ı	ı	1	1	1		i	0.55	0.47	69.0	0.77	0.52	,	•
510_2	72.9	82.0	79.4	79.1	79.9	83.5	0.89	64.8	8.79	58.6	59.63	30.8	73.09	72.93	0.69	83.3	54.0	88.4	71.2	71.6	46.7
Color molido	Marron claro Anarillento	Gris claro Balnquesino	Marron claro Amarillento	Marron Grisaceo	Marron muy Claro	Marron Claro	Rojo Ocre fuerte	Rojo Ocre fuerte	Rosado Naranja	Rosado muy Claro	Blanco excelente	Beige Amarillento	Gris Claro	Gris	Gris Fuerte Oscuro	Gris Fuerte Oscuro	Marron Rojo Fuerte	Gris Fuerte Oscuro	Rosado fuerte	Gris fuerte	Rosado fuerte
Tipo de material	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Lateritica	Arcilla Lateritica	Arcilla Caolinica	Arcilla Caolinica	Pirofilita Charara	Arcilla Puzolanica	Arcilla Lateritica	Arcilla Puzolanica	Arcilla Caolinica	Arcilla Puzolanica	Arcilla Caolinica				
Cod. de Labo	3249	3250	3251	3252	3253	3254	3256	3257	3258	3259	3372	3381	3383	3385	3405	3407	3408	3409	3418	3442	3444
Código De Campo	A20/97	A21197	A22/97	A23/97	A24/97	A25/97	A27/97	A28/97	A29/97	A30/97	A33/98	A42/98	A44/98	A46/98	A51/98	A53/98	A54/98	A55/98	A64/98	86/99W	A68/98

			-	_
2	P/C			
all a	H ₂ O			
	K,O	1.51	1.00	1.2
0	Na,0	0.22	0.41	3.0
	MgO	0.16	6.04	1.26
	CaO	0.14	0.00	0.83
	Mao	0.02	0.021	7.67 0.06
	TiO ₂ Al ₂ G ₃ Fe ₂ O ₃	1.52	99.0	7.67
E g	ALC3	8.83	3.86	8.75
	TiO ₂	ı		
	SiO ₂	67.3	65.31	64.20
*•.	Color molido	Griz celeste fuerte	Gris azulado	Gris
	Tipo de material	Arcilla Puzolanica	Arcilla Puzolanica	Arcilla Plastica
*	Cod. de Labo	3446	3455	3544
	Código De Campo	A70/98	86/6LY	490/99

Al ₂ Si ₂ O ₅ (OH) ₄ Al ₂ Si ₂ O ₅ (OH) ₄ Al ₂ Si ₂ O ₅ (OH) ₄ H ₂ O Al ₂ Si ₂ O ₅ (OH) ₄ H ₂ O	(AI, Mg) ₈ (Si ₄ O ₁₀) ₃ (OH) ₁₀ 12 H ₂ O (Mg,Fe) ₃ (AI,Si) ₄ O ₁₀ (OH) ₂ (½Ca,Na) _{0.3} (H ₂ O) ₄ Fe ₂ (AI, Si) ₄ O ₁₀ (OH) ₂ Na _{0.3} (H ₂ O) ₄ (Ca,Na) _{0.3} AI ₂ (OH) ₂ (AI,Si) ₄ O ₁₀ (H ₂ O) ₄ (Mg,Li) ₃ Si ₄ O ₁₀ (OH) ₂ Na _{0.3} (H ₂ O) ₄	K1510Al4[Si6.5-7.0Al1.5-1.0O20](OH)4	(OH ₂) ₄ (OH) ₂ Mg ₅ Si ₈ O ₂₀ 4H ₂ O Mg ₄ (OH) ₂ Si ₆ O ₁₅ H ₂ O+4H ₂ O
и и и и и и		11 11	11 11
GRUPO DEL CAOLÍN: Caolinita Dickita Nacrita Halloysita Halloysita deshidratada	GRUPO DE LAS SMECTITAS: (Montmorrillonita) Montmorrillonita Saponita Nontronita Beidellita Hectorita	GRUPO DE LAS ILLITAS:	IV GRUPO DE LAS HORMITAS: Paligorskita Sepiolita
100A		CONTRACTOR OF THE STATE OF THE	minuments / * proposed National Assessment


Clasificación de los minerales de arcilla

DE LADRILLOS Y CERAMICA ARTESANAL

COOPERACION GEOLOGICA PARAGUAYO - ALEMANA HOLL R 90 \$0 PLASTICIDAD CONSISTENCIA TENAZ (8) CUERPO MAS RESISTENTE 0 INCREMENTO DE LA CONTRACCION Figura 1 H CESAMICA ARTESANAL ы О 30 ESPACIO CPTINO INDICE - רייטאוררסי 20 $\stackrel{\circ}{\sim}$ FRAGIL SAM CUERPO EZCVZV CONTESION 40-30-201 0 PLASTICO LIMITE

PARA LA FABRICACION APLICADOS ATTERBERG tit (C) LIMITES

COOPERICION GEOLOGICA PARAGUAYO - ALEMANA DE LADRILLOS Y CERAMICA ARTESANAL

INDICE DE PLASTICIDAD

FABRICACION

DE LADRILLOS Y CERAMICA ARTESANAL

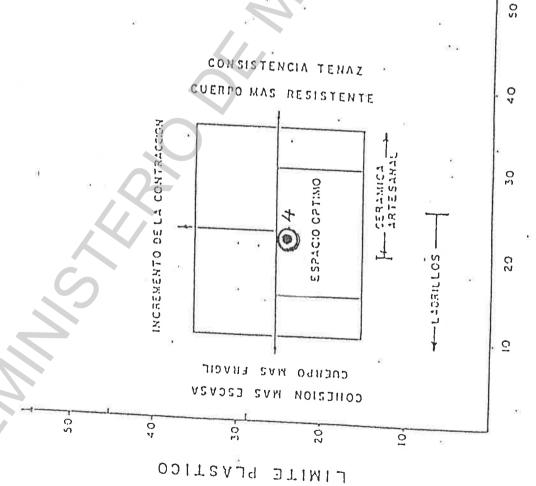
רחחה בחבוח מבחדת החומבות במעצם יעדב אינו

0 CONSISTENCIA TENAZ CUERPO MAS RESISTENTE INCREMENTO DE LA CONTRACCION I TERAMICA 0 E SPACIO CPT:NO - רזפטוררסצ -5 כחכוונס אדב בוועפור CONSION MAS ESCASA 40 10 20 0 PLASTICO LIMITE

Ĺ

PLASTICIDAD.

เม


ROICE

50

LIMITES

ES DE ATTERBERG APLICADOS PARA LA FABRICACION DE LADRILLOS Y CERAMICA ARTESANAL

COOPERACION GEOLOGICA PARAGUAYO-ALEMANA

E DE PLASTICIDAD

ROICE

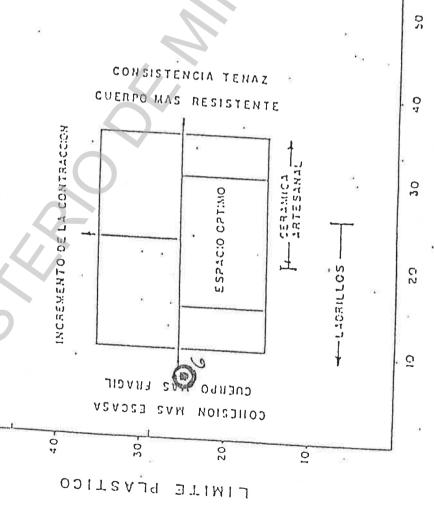
PARA LA FABRICACION DE LADRILLOS Y CERAMICA ARTESANAL APLICADOS ATTERBERG tij (C) LIMITES

COOPERACION GEOLOGICA PARAGUAYO - ALENANA 20 PLASTICIDAD CONSISTENCIA TENAZ CUERPO MAS RESISTENTE 0 INCREMENTO DE LA CONTRACCION THE STREET D E 0 ESPACIO CPTINO ហ 0 NOICE - LADRILLOS -20 2 ENVOIL CUERPO MAS ESCVSV CONESION 50 0,7

30-

PLASTICO

20


LIMITE

0

PARA LA FABRICACION ARTESAMAL CERAMICA APLICADOS >-ATTERBERG DE LADRILLOS ti) LIMITES

5.0

COOPERACION GEOLOGICA PARAGUAYO - ALEMANA

INDICE DE PLASTICIDAD

PARA LA FABRICACION APLICADOS ATTERBERG li) LIMITES

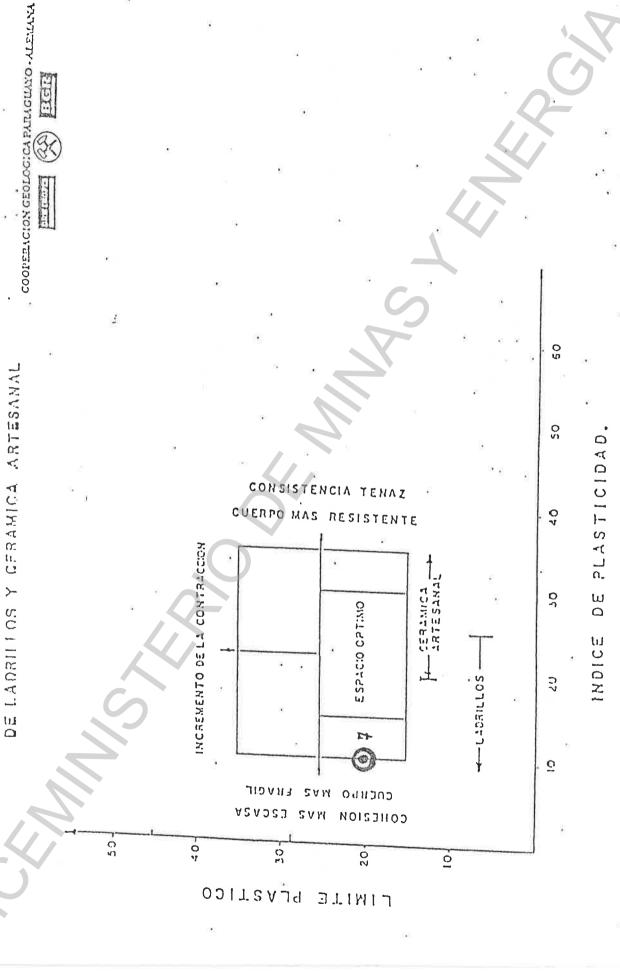
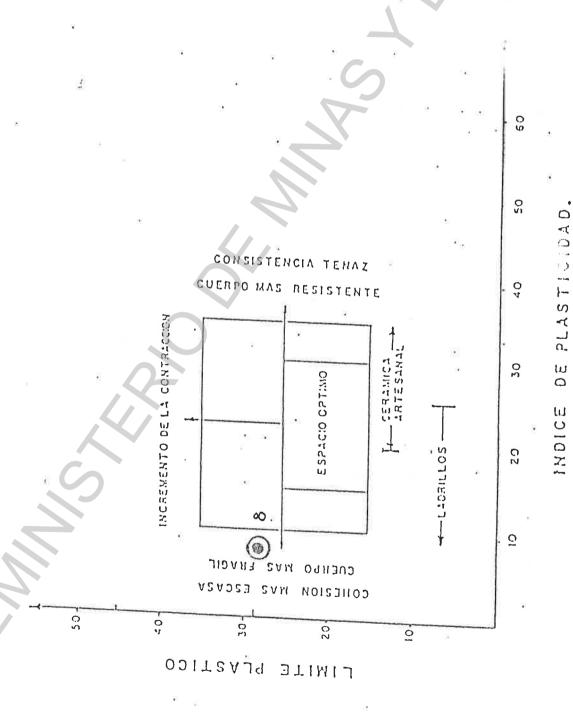
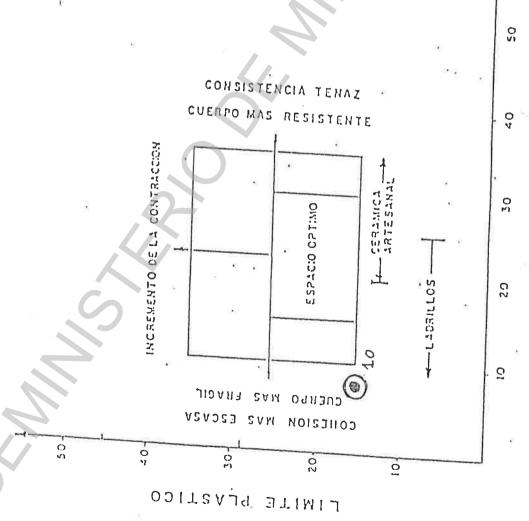



Figura ∓

COOPERACION GEOLOGICA PARAGUAYO - ALE LANA PARA LA FABRICACION DE LADAILLOS Y CERAMICA ARTESANAL APLICADOS ATTERBERG ii) LIMITES

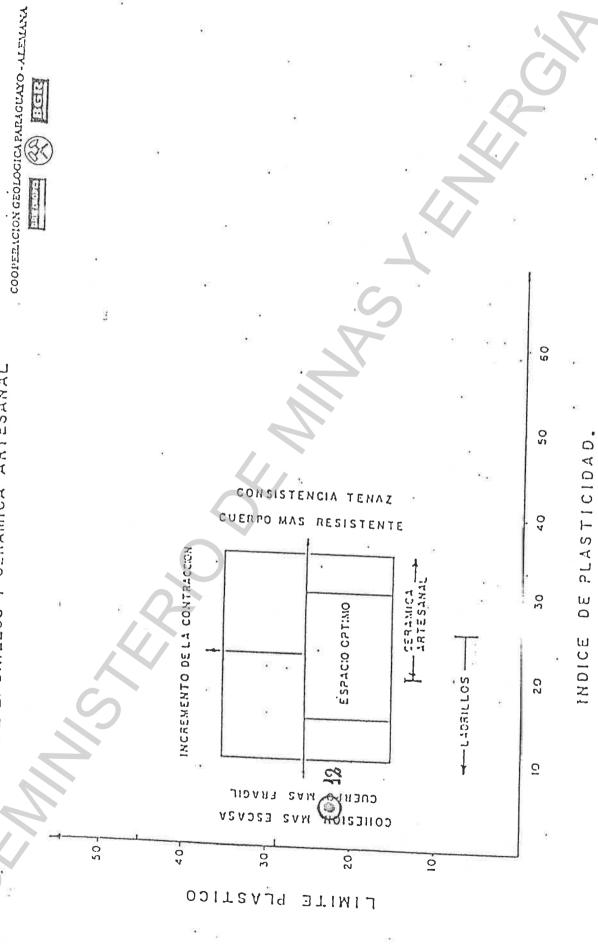
PARA LA FABRICACION APLICADOS ATTERBERG Ü LIMITES


DE LADRILLOS Y CERAMICA ARTESANAL

COOPERACION GEOLOGICA PARAGUAYO. ALEKANA PLASTICIDAD CONSISTENCIA TENAZ CUERPO MAS RESISTENTE 0 INCREMENTO DE LA CONTRACCION L CERTHICA LATESANAL O M 30 ESPACIO CPTINO BOICK - LIBBILLOS -₩ 0.2 Ç CUCHPO MAS FRAGIL E2CV2V CONESION 0.7 30 20 0 PLASTICO LIMITE

APLICADOS ATTERBERG tij G LIMITES

PARA LA FABRICACION DE LADRILLOS Y CERAMICA ARTESANAL


COOPERACION GROTOGICS PARAGUINO - ALEGANA

DE PLASTICIDAD.

INDICE

PARA LA FABRICACION. DE LADRILLOS Y CERAMICA ARTESANAL APLICADOS ATTERBERG lu C LIMITES

PARA LA FABRICACION ARTESANAL CERAMICA APLICADOS DE LADRILLOS Y ATTERBERG [1] LIMITES

COOPEZICION GEOLOGICA PARAGUAYO - ALEMANA

50 000 CONSISTENCIA TENAZ CUERTO MAS RESISTENTE 40 INCREMENTO DE LA CONTRACCION I ARTESANAL 0.5 ESPACIO OPTINO -- רזסטוררסצ 20 Ö FILAGIL SAM CUERPO CZCVZY CONTRION 50. 107 000 20 0 PLASTICO LIMITE

Figura 12

PLASTICIDAD

[1]

ROICE

PARA LA FABRICACION DE LAURILLOS Y CERAMICA ARTESARAL APLICADOS ATTERBERG lii O CIMITES

COOPERICION GEOLOGICA PARAGUANO - ALEMANA GONSE A GONS

50 CONSISTENCIA TENAZ CUERTO MAS RESISTENTE INCREMENTO DE LA CONTRACCION THE SERVICA 30 ESPACIO CPTIMO 20 +-LASSILLOS 2 CUERPO MAS FRAGIL AZADZE. COLICEDON SVW 50 0, 30-502 0 PLASTICO PIMILE

INDICE DE PLASTICIDAD.

PARA LA FABRICACION DE LADRILLOS Y CERAMICA AKLESANAL APLICADOS ATTERBERG tij (C) LIMITES

COOPEEASCION GEOLOCICA PARAGUANO - ALEALANA

CONSISTENCIA TENAZ CUERPO MAS RESISTENTE 9 E SPAC:0 CPT:NO INCREMENTO DE LE - 50316 FOS - $\overline{\mathbb{S}}$ כחבוונה אומפ FRAGIL COHESION MYS 5:0-30 201 0 PLAST1C0

TIMILE

Figura 14

50

PLASTICIDAD

D

RNDICE

PARA LA FABRICACION DE LADRILLOS Y CERAMICA ARTESANAL APLICADOS ATTERBERG tit () LIMITES

COOPERACION CEOLOCICA DARAGUACO - ALEMANA

S Ð, CONSISTENCIA TEHAZ CUERPO MAS RESISTENTE INCREMENTO DE LA CONTRACCION T CERTAINCA TRAINER 30 ESPACIO CPTINO - C2531LLOS -H 0 CUEHPO MAS FRAGIL ESCASA SVY CONESION 504 -0= 30 20 0 PLASTICO TIMILE

INDICE DE PLASTICIDAD

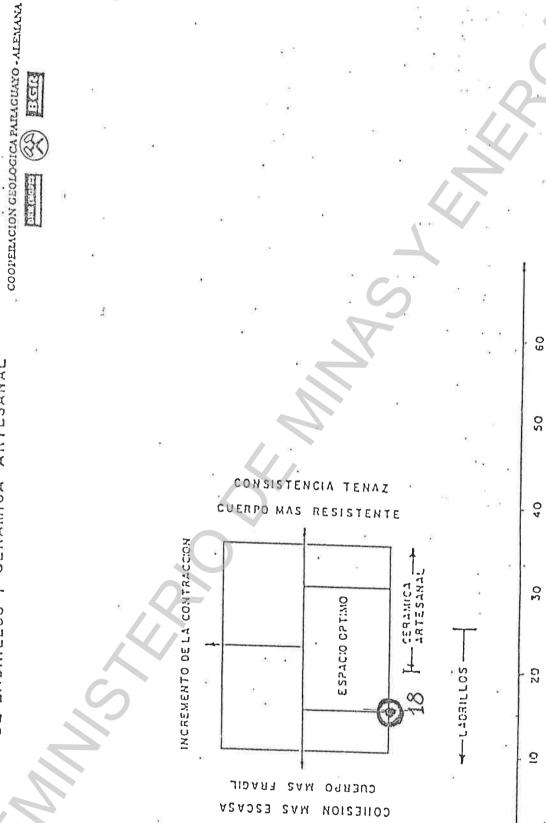
Figure 45

PARA LA FABRICACION APLICADOS ATTERBERG lul O LIMITES

DE LADRILLOS Y CERAMICA ARTESANAL

50-

404


30

оріталіч

20

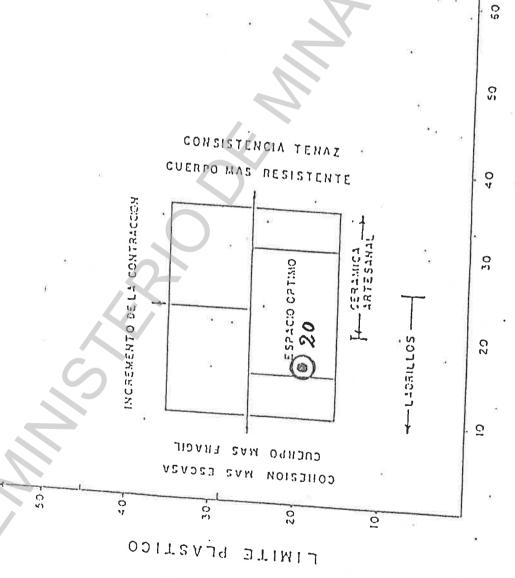
LIMITE

0

PLASTICIDAD. E O NOICE

PARA LA FABRICACION ARTESANAL Y CERAMICA APLICADOS ATTERBERG DE LADRILLOS C) III LIMITES

COOPERICION GEOLOGICA PARAGUAYO - ALEMANA


000 CONSISTENCIA TENAZ CUERPO MAS RESISTENTE INCREMENTO DE LA CONTRACCION F CERTAINCA ESPACIO CPTINO -LABRILLOS -5.5 2 MAS FRAGIL CUERPO EZCVZY SVN COHESTON 5.0 40 0.5 20 0 PLASTICO

LIMITE

PLASTICIDAD LI O NOICE

PARA LA FABRICACION ARTESANAL DE LADRILLOS Y CERAMICA APLICADOS ATTERBERG EII EII LIMITES

COOPERACION GEOLOGICA PARAGUAYO. LEMENA

PLASTICIDAD. Figura 18

LI C

BOICE

PARA LA FABRICACION APLICADOS ATTERBERG iii Ci LIMITES

DE LADRILLOS Y CERAMICA ARTESANAL

50

-0-

רטטויבייניטא הבטוטכונים היומממאס - אוביימאא 60 02 CONSISTENCIA TENAZ CUERPO MAS RESISTENTE INCREMENTO DE LA CONTRACCION 0 ESPACIO CPTINO -Librillos -12 25 5 CUCHPO MAS FRAGIL EZCVZV COHERION

000

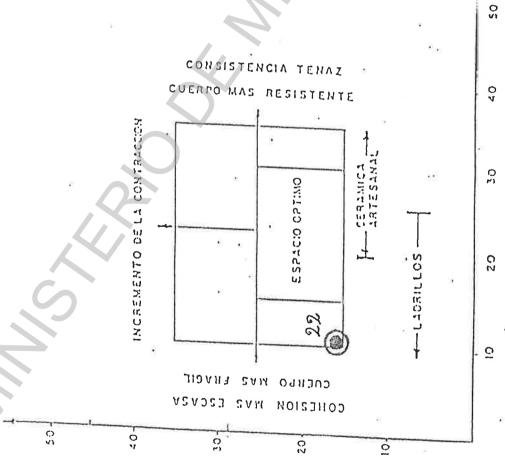
PLASTICO

20

TIMILE

0

PLASTICIDAD LIJ O ROICE


PLASTICIDAD.

E E

NOICE

PARA LA FABRICACION Y CERAMICA ARTESANAL APLICADOS ATTERBERG DE LADAILLUS (II) LIMITES

COOPERACION GEOLOGICA PARAGUANO - ALEMANA



LIMITE PLASTICO

PARA LA FABRICACION the databalate to the balabalate APLICADOS ATTERBERG tı) () LIMITES

DE LADRILLOS Y CERAMICA ARTESANAL

COOPEZICION GEOLOGICA PARAGUAYO ALETANA

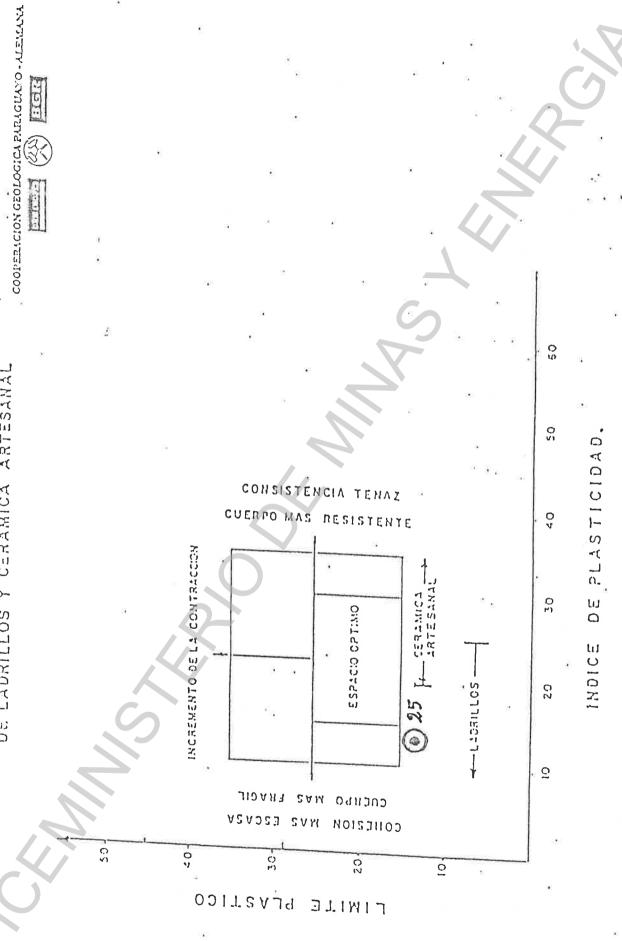
INDICE DE PLASTICIDAD,

J. J. J. J. J. J.

PARA LA FABRICACION APLICADOS ATTERBERG DE LADRILLOS tit ()

COOPERACION GEOLOGICA PARACILAYO - ALEMANA ARTESANAL Y CERAMICA

S, CONSISTENCIA TENAZ CUERTO MAS RESISTENTE 40 INCREMENTO DE LA CONTRACCION THE CERTAINCY 30 ESPACIO C2T:NO -LADRILLOS 20 77 (Ō MAS FRAGIL CUCHPO EZCVZV SVN CONCRION 0 7 30-02 0 PLASTICO LIMITE


Figura 22

PLASTICIDAD.

tu O

NOICE

PARA LA FABRICACION ARTESANAL Y CERAMICA APLICADOS ATTERBERG DE LADRILLOS ti) LIMITES

i

Historbergardage of the LIMITES

PARA LA FABRICACION CERAMICA ARTESANAL APLICADOS >-ATTERBERG DE LADRILLOS tii (i)

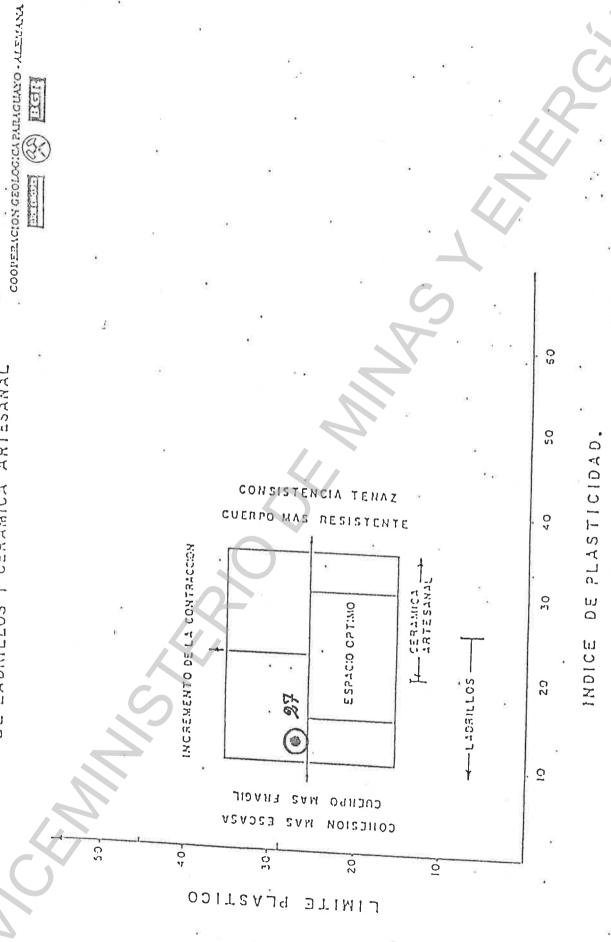
COOPERICION GEOLOGICA PARAGUAYO - ALEXANA

R

60 000 CONSISTENCIA TENAZ CUERPO MAS RESISTENTE 0 INCREMENTO DE LA CONTRACCION F CERTHICA LATESTANT 20 ESPACIO CPTIMO -LIGHTLOS -97.0 25 2 ERVEIL CUCHPO MAS EZCVZV SVN CONESION 101 0.5 201 0 PLASTICO LIMITE

Figura 24

PLASTICIDAD.


M O

INUICE

were our excount of the telebrate of the of the of the of the of the of the APLICADOS ATTERBERG lij \Box LIMITES

PARA L'A FABRICACION LADRILLOS Y CERAMICA ARTESANAL uJ \Box

!!दिवा

EII EII LIMITES

ITES DE ATTERBERG APLICADOS PARA LA FABRICACION DE LADRILLOS Y CERAMICA ARTESANAL

COOPERACION GEOLOGICA PARAGUAYO - ALEYLANA

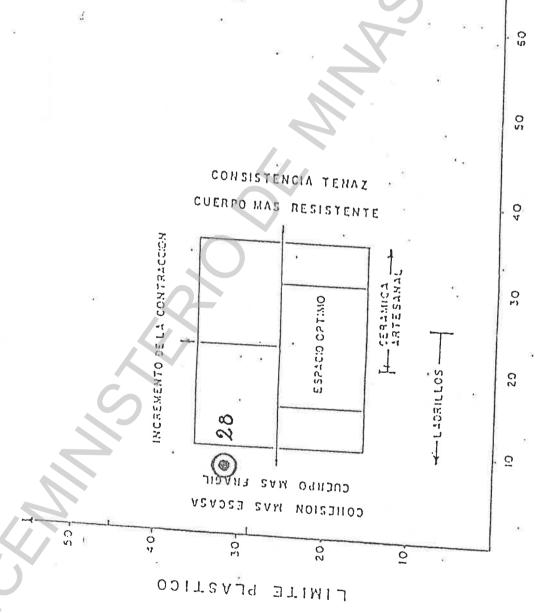


Figura 26

PLASTICIDAD

O E

NOICE

PARA LA FABRICACION APLICADOS ATTERBERG ii) LIMITES

DOT)

LADRILLOS Y CERAMICA ARTESANAL

COOPERACION GEOLOGICA PARAGUAYO - ALEMANA 7

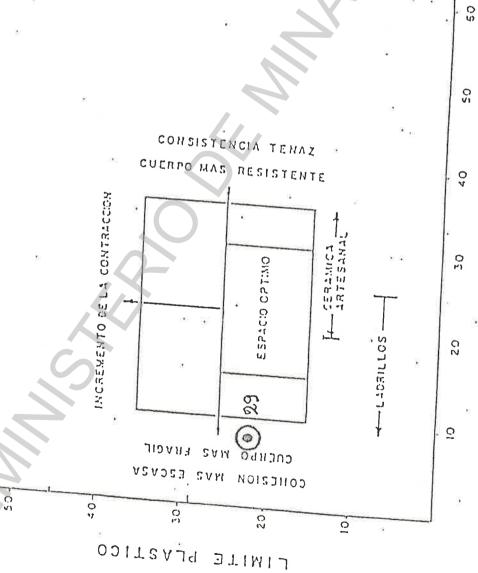


Figura 27

PLASTICIDAD.

m D

INDICE

t a tatalog of or over the open of the PARA LA FABRICACION APLICADOS \succ ATTERBERG LADRILLOS O [1] lu) LIMITES

ARTESANAL CERAMICA

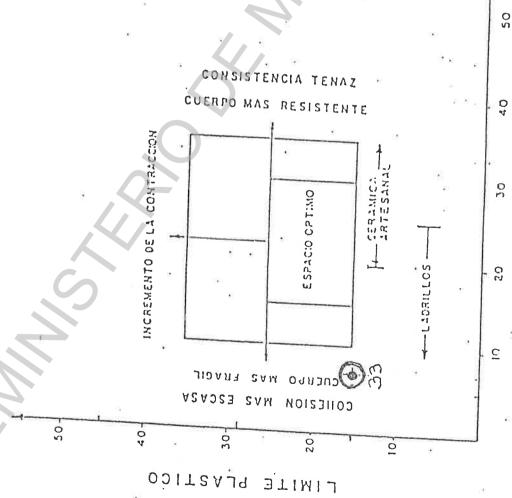
राजा

R.

COOPERACION GEOLOGICA PARAGUAYO - ALEYANA 9 S CONSISTENCIA TENAZ CUERPO MAS RESISTENTE 40 INCREMENTO DE LA CONTRACCION THE SANAL ARTESANAL 30 ESPACIO CPTIMO -- LABRILLOS -20 **(** 32 õ FRAGIL SAM CUERPO ESCASA SVW COHESION 404 30-20

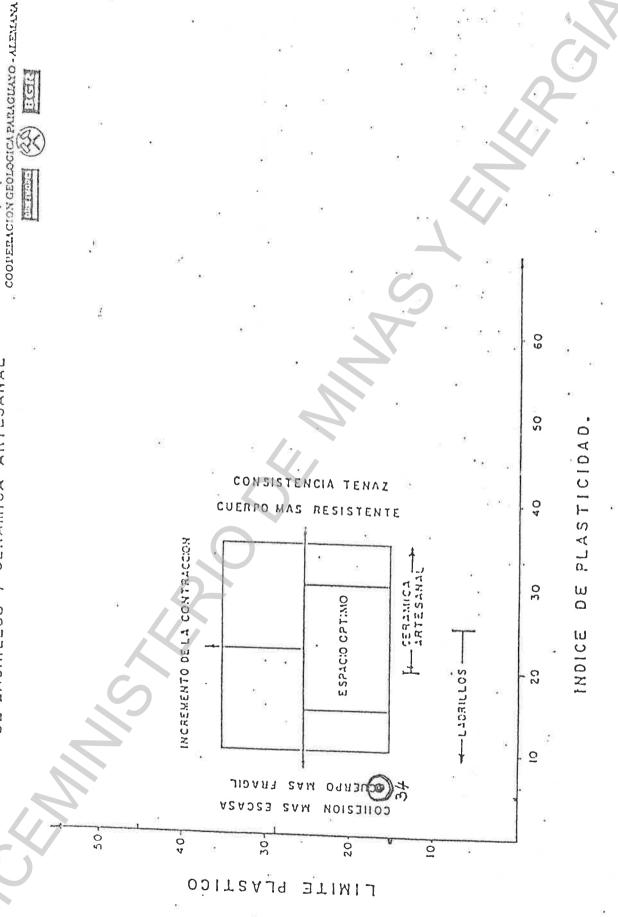
PLASTICO

PLASTICIDAD س ت INDICF

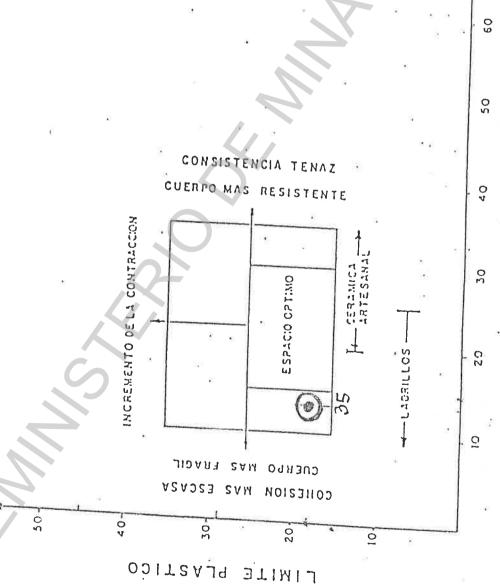

0

LIMITE

Figura 28


PARA LA FABRICACION DE LADRILLOS Y CERAMICA ARTESANAL APLICADOS ATTERBERG [1] LIMITES

COOPERACION GEOLOGICA PARAGUAYO - ALEMANA R


INDICE DE PLASTICIDAD.

PARA LA FABRICACION ARTESANAL DE LADRILLOS Y CERAMICA APLICADOS ATTERBERG EI) LIMITES

PARA LA FABRICACION DE LADRILLOS Y CERAMICA APLICADOS ATTERBERG li) O LIMITES

COOPERACION GEOLOGICA PARAGUANO - ALEMANA ARTESANAL

130

Figura 31

PLASTICIDAD

ພ ດ

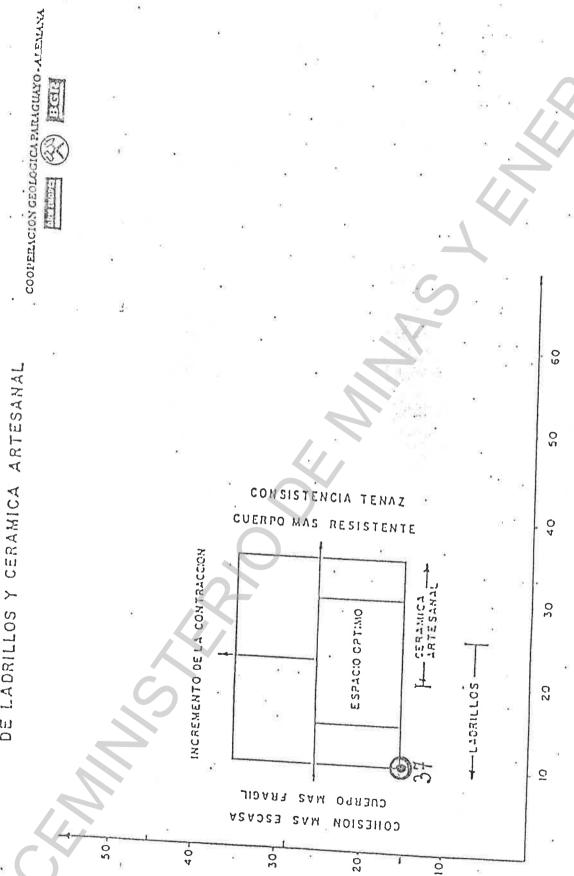
NOICE

してくしてしてしてしてしてしてしてしてしてしてして COOPERACION GEOLOGICA PARAGUAYO - ALEMANA (F) PARA LA FABRICACION ARTESANAL APLICADOS CERAMICA CONSISTENCIA CUERPO MAS RESISTENTE 0 INCREMENTO DE LA CONTRACCION F SERAMICA ARTESANAL ATTERBERG 30 DE LADRILLOS ESPACIO CPTIMO -- LABRILLOS -lij O LIMITES 2 FRAGIL SAM CUERPO ESCASA COHESION 404 30-20 0 PLASTICO LIMITE

PLASTICIDAD

lı.

INDICE


Figura 32

60

20

PARA LA FABRICACION APLICADOS ATTERBERG DE LADRILLOS li) LIMITES

in the state of th

PLASTICO

3,TIMI1

PLASTICIDAD

W O

INDICE

PARA LA FABRICACION LADRILLOS Y CERAMICA ARTESANAL ATTERBERG APLICADOS tij O E E LIMITES

COOPERACION GEOLOGICA PARAGUAYO - ALEMANA

ETTER (A) ETTER

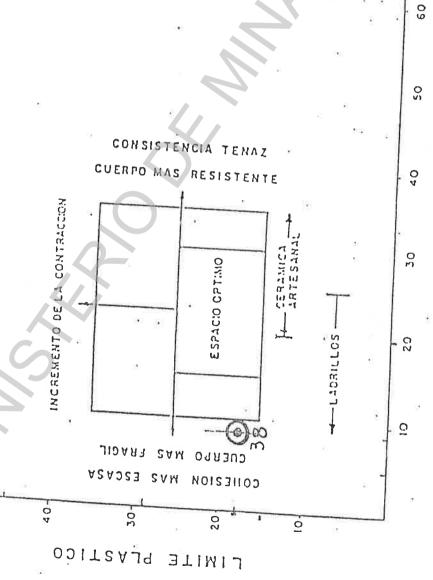


Figura 34

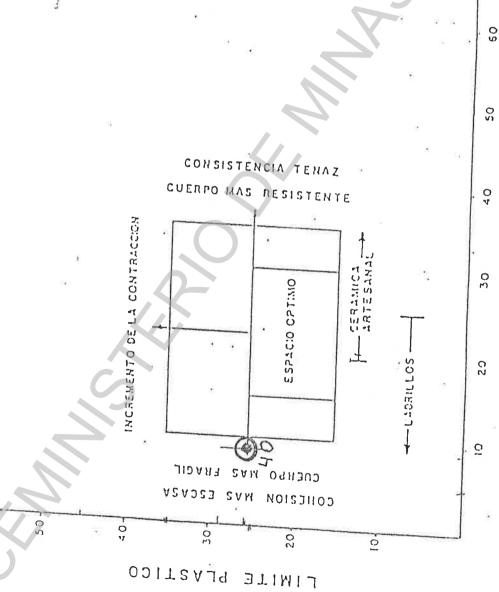
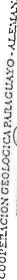
PLAS IICIDAD.

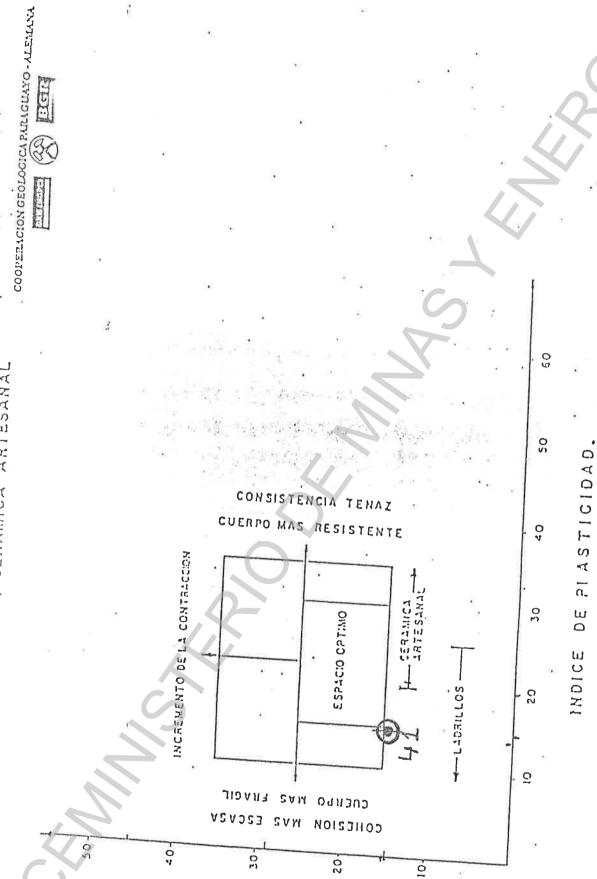
E E

INDICE

COOPERACION GEOLOGICA PARAGUAYO - ALEMANA

FIRES (S) EEE


Figura 35

PLASTICIDAD.

₩ 0

NOICE

PLASTICO

LIMITE

Figura 36

COOPERSCION GEOLOGICA PARACUANO ALEMANA

CONSISTENCIA TENAZ CUERTO MAS RESISTENTE INCREMENTO DE LA CONTALCCION L CERAMICA ARTESANAL ESPACIO OPTINO - רזטאוררספ 20 43 0 õ FILVGIL כטבווףט ESCASA CONESION 107 30 203 0 PLASTICO LIMITE

Figura 37

PLASTICIDAD

(I)

INDICE

90

50

0

30